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Abstract
Human-Robot-Interaction and Learn-

ing from Demonstration require intuitive
and ergonomic means of communication.
Guiding a robot through the task of sim-
ple interaction with its environment usu-
ally requires, additionally to a domain
expert, also a robotics expert. Human
hand gestures are a valuable communica-
tion modality, since (i) humans are very
skilled in producing them, and (ii) rele-
vant geometrical quantities can easily be
demonstrated.

In this thesis, we develop a connec-
tion between the human hand and a
robot manipulator arm. Different meth-
ods for gesture-based robot control, in-
cluding Cartesian position, are explored,
such as live mapping with the manipulator
and its action-based control. Definition
and implementation of several methods
to perform various robotic manipulation
use-cases (e.g., opening cabinet drawers,
pushing a button, and manipulating ob-
jects).

The approach was implemented using
a selection of static and dynamic gestures
and verified in isolated experiments as
well as in a user study with seven partici-
pants. Two gesture detection mechanisms
were implemented and compared: an en-
gineered approach based on selected fea-
tures and a probabilistic learning-based
method.

The whole system idea is to forge to-
gether different parts of the system, where
independently they are widely used, but
together, they are unused. The thesis orig-
inated for a purpose of implementation
Human-Robot-Interaction into the every-
day world with a possibility to facilitate
the people life. That is where controlling
the robot manipulator with a hand can
be beneficial.

Keywords: Human-Robot-Interaction,
gesture detection, probabilistic gesture
detection, Probabilistic neural networks,

Dynamic Time Warping, robot
manipulator
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Jugoslávských partyzánů 1580/3,
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Abstrakt
Interakce člověka s robotem a učení se z
demonstrace vyžadují intuitivní a ergo-
nomické komunikační prostředky. Vedení
robota úkolem jednoduché interakce s jeho
prostředím obvykle vyžaduje kromě od-
borníka na doménu také odborníka na
robotiku. Gesta lidské ruky jsou cennou
komunikační modalitou, protože (i) lidé
jsou velmi zruční v jejich výrobě a (ii)
relevantní geometrické veličiny lze snadno
demonstrovat.

V této práci rozvíjíme spojení mezi lid-
skou rukou a robotickým ramenem mani-
pulátoru. Jsou zkoumány různé metody
pro ovládání robotického manipulátoru
na základě gest, včetně kartézské polohy,
jako je živé mapování pomocí robotického
manipulátoru a jeho ovládání založené na
řízení. Definice a implementace několika
metod k provádění různých případů pou-
žití robotické manipulace (např. Otevírání
zásuvek skříňky, stisknutí tlačítka a ma-
nipulace s objekty).

Přístup byl implementován pomocí vý-
běru statických a dynamických gest a ově-
řen v izolovaných experimentech i v uži-
vatelské studii se sedmi účastníky. Byly
implementovány a porovnány dva mecha-
nismy detekce gest: inženýrským přístu-
pem založeným na vybraných funkcích a
pravděpodobnostní metodou založenou na
učení neuronové sítě.

Myšlenkou celého systému je spojit do-
hromady různé části systému, kde jsou
nezávisle široce používány, ale společně
využívány nejsou. Práce vznikla za úče-
lem implementace interakce člověk-robot
do každodenního světa s možností usnad-
nit lidem život. Jelikož se jedná o obor,
kde může být ovládání robotického mani-
pulátoru rukou výhodné.

Klíčová slova: Člověk-robot interakce,
detekce gest, pravděpodobnostní detekce
gest, pravděpodobnostní neuronové sítě,
Dynamic Time Warping, robot
manipulator

Překlad názvu: Pravděpodobnostní
přístup k ovládání robotického ramene
pomocí gest
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Chapter 1
Introduction

1.1 Thesis Motivation

Programming and testing a new robot manipulator operation task requires a
lot of work. Most of the robot movements are deterministic and do not offer
any kind of variation. In the future, there will be a substantial demand for
robots that can operate on its own in various situations. Robots will need to
be capable of handling more common situations than only the programmed
ones. For example, robots could be in principle good work bench companions,
handing over tools and work pieces or aid in manipulating heavy objects. New
robot interaction methods are needed to make the human-robot interaction
more fluid and robust. In this thesis is introduced a system that facilitates
human gestures to control a robot performing a set of (manufacturing related)
tasks.

What if there was a more natural way to manipulate the robot operations
than with the standard approaches (e.g., keyboard, mouse). One option is
to use the most essential asset we have - a hand. Human hands are capable
of producing a large variety of nuanced gestures, which are much used in
human-human conversations (adding accentuation, geometric analogies, etc.).

To hand gestures might be assigned various signaling meanings, such as
direction, specific action or more advanced meanings. We can even extend that
list and define via gestures, signaling quantities (e.g., length of motion, velocity
conditions, etc...), geometric relations (e.g., orientation), time points (e.g.,
pulse quantities in a pattern), etc. Hand position has very good manipulation
control with very good accuracy. That is why, still to this day, the computer
mouse is one of the most accurate controlling devices for computers. That
could be a good match to couple the robot manipulation end-effector to the
hand position.

How far can we go with hand control? To what extend can actually the
hand control be used for operating a robot? Should this approach be expanded
into daily use within programmers and even real users? Which steps towards
its wide spread are needed? What accuracy of the gesture recognition is
needed to make this method useful?

There is an option to combine the coupling of positions while performing a

1



1. Introduction .....................................
unique static gesture with a hand, for example, grabbing with a hand while
maintaining a specific position. That is the most elementary but simple
example that could perform a decent function for defined control operations.
For example, opening a drawer or grabbing a box.

The tasks could be split into different levels of autonomy (triggering,
controlling process, and fine-grained motion control). For example, disaster
response remote control. There is a need to trigger some response in a
form of a robot manipulation execution. Another example could be a crane
manipulator control. With the position of a hand, the operator can easily
operate the rotation of the crane, its manipulation arm, and its holder with
high accuracy. Some security features would need to be introduced while
achieving this situation. Speaking of security, robustness and safety are a
major concern in human-robot interaction.

Quantifying the uncertainty in human-robot interaction has many potential
benefits, especially the increase of robustness. One option to model uncer-
tainty is to utilize probabilistic methods for this purpose. The framework
of probabilistic programming enables (i) to learn from data and (ii) classify
observations, and (iii) evaluate the certainty with which was the observation
classified within the given category.

In the context of this thesis, we use probabilistic programming to learn new
gestures from demonstration data and to classify gestures during the robot
operation. Briefly speaking, the thesis aims to develop a connection between
the human hand and the robot arm. We evaluate the accuracy of detection
of various types of gestures. To answer the above mentioned question if the
system might be useful for real users, we evaluate the quality of the proposed
solution on a set of users of various age.

1.2 Brief summary of used approach

The hands of the user are recorded using a proper device (specifically Leap
Motion 4.1.1). Hands are detected and bone structure is constructed from
hands. The bone structure with respect to time is passed into the gesture
detection application where the output is matched to a previously learned
system of gestures. The detected gesture is then mapped to robot manipulator
actions. This action can be a direct execution of a motion or a condition
for another more complex action which consists of multiple motions. The
actions can be of various types and are linked to the robot configuration (e.g.,
a dynamic gesture Swipe left is performed relatively to the current robot
configuration).

Gesture detection is done with a deterministic method and probabilistic
method. The deterministic one is programmed and tuned by hand with the
intention of achieving the best possible values for the detection of each gesture.
The probabilistic gesture detection is automatic detection where the system
itself finds the best parameters to classify between individual gestures. The
Bayesian machine learning methods are trained on an input dataset of hand
movements. Specifically, we use a process known as Bayesian inference to

2



.................................. 1.3. Goals of the thesis

detect individual gestures, which are previously defined. Gesture detection
via Bayesian inference can be a difficult task, usually demanding a lot of
computational power. Often it is needed to select the right approach to utilize
the input dataset effectively and satisfy user demands. Then there needs to
be verified if, indeed, the statistical model is valid (i.e., if it is still true to
original idea or it just behaves like that), checking validity by going back to
the roots even if the model is working correcrly and analyte the system again.

1.3 Goals of the thesis

The main goal of the thesis is to create a mapping between a hand and a
robot’s end-effector to enable direct control of the robot by gestures. A visual
feedback of the detected pose and robot movement should be provided to the
operator.

With that being said, there is a need to define a set of manipulation tasks
which the robot manipulator should perform. These tasks might include, for
example, picking an object, pushing a button, or opening and closing a socket
of a drawer. Afterwards, a suitable gesture from the custom set of gestures is
attached to every action.

Furthermore, a set of gestures and corresponding robot actions should be
specified. Categorize gestures and recognize them by the system. Use not
only deterministic approaches but also probabilistic ones.

A custom gesture-based user interface enables to display the results of
gesture detection as well as to control the high-level robot actions and
properties manually. Switching between individual modes in this interface is
enabled also via specific gestures.

User study displaying the accuracy and error rate of manipulation and
gesture recognition was performed.

3
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Chapter 2
Related work

In this chapter are presented the studies and experiments on which this thesis
builds up. Various topics are presented on each category of research. The
focus is on works from the following three categories: gesture recognition,
robot control via gestures, and human-machine interaction. Finally, the
contribution of the thesis compared to the presented studies is summarized.

2.1 Gesture recognition industry

Gesture recognition has been with us for a few decades already. Either if we
are talking about face gesture detection interpretation [4] or hand dynamic
gesture detection [5]. Although these were successful attempts to detect
gestures from an image sequence, they were limited by the computational
power of the machines at that time.

Newer studies processed with very high quality a considerable variance
of detection itself. For example, gesture recognition is based on surface
Electromyographic signals [6] or Inertial measurement units such as 3 Axis
Accelerometers and 3 Axis Gyroscopes.

There is a lot of academic work specific to Leap Motion controller con-
centrated on gesture detection. Some are concentrating on the recognition
of hand gestures themselves using Leap Motion utilities [7]. Or there is a
possibility of controlling remote robots, for instance, Quadrotor Drones, by
gestures in the form of a game [8]. Where the position of the drone is mapped
to the hand of a user using a PID controller.

2.2 Robot control via gestures

There are relevant studies on the utilization of gesture recognition, for example,
controlling a wheelchair [9] using a combination of EMG signal sensors and
IMU sensors. Methods for gesture recognition in this work are processes that
are mainly using the root mean square of input signals with further Deep
Support Vector Machine classifier.

There are also studies of Gesture Control with Robotic Arms equipped
with a remote transceiver [10] where the output system contains a specific

5



2. Related work.....................................
human hand with five fingers. The author concentrates on execution on a
microcontroller and making the control wireless.

Other works use a remote robot agent which has a computer camera
mounted on the robot agent [11]. Gesture recognition is performed by
utilizing RGB filters for a hand search. Ongoing with the longest distance
calculation from the center of gravity of the hand. The output is a direction
for the robot to go .

2.2.1 Human-Machine-Interaction via gestures

Now, let us concentrate on related work using the representation of hand
movements via Dynamic and Probabilistic motion primitives specifically
applied in Human-Robot Interaction.

Before Probabilistic Movement Primitives, the Deterministic Movement
Primitive systems have been used with fullfillment for a mixture of robotic
tasks along with grasping or locomotion [12].

The advantage of probabilistic approaches is that, they can naturally
work with variability using a probability distribution. A few of probabilistic
representations of movement primitives target on learning a distribution by
demonstrated states using Hidden Markov models. Afterwards, using the
log likelihood as cost function to reproduce the learned movement using an
optimal control method [13].

The use of a hierarchic HMM to learn and perform responsive robot
behaviors. In their approach, high-level HMM identifies the current state of
the interaction and triggers low-level HMMs which correspond to the robot’s
motor primitives. In order to ensure that the robot adapts to the movement
of the human partner, virtual springs are attached between markers on the
human body and corresponding positions on the robot [14].

Dynamic Movement Primitives allows for a low-dimensional, adaptive
representation of a trajectory. The general idea is to encode a recorded
trajectory as dynamical systems, which can be used to generate different
variations of the original movement. In the context of interaction [15].

The proposed solution combines a linear attractor system which is modu-
lated by a time-dependent forcing function and normalized Gaussian basis
functions. Dynamic movement primitives introduce a concept of a phase of
movement which can elongate or shorten the desired path, enable learning
from a single demonstration [16], or generalization [17]. There are also pre-
sented normalized Gaussian basis functions. Dynamic movement primitives
introduce temporal scaling of the movement, enable learning from a single
demonstration or generalization to new final positions.

Related studies on Probabilistic Motion primitives include Jan Peters team
specializing in physical human-robot interaction using imitation learning. In
[18] they evaluated the quality of imitation learning on a classical n degree of
freedom robot arm.

6



...............................2.2. Robot control via gestures

2.2.2 Thesis acquisition

Most of the previous studies have focused on either gesture detection or robot
control. This thesis emphasizes the integration of gesture detection on the
robot arm while using deterministic and probabilistic methods and comparing
their performance.

7
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Chapter 3
Theoretical background

In this section are introduced all things needed to understand the theory
and the proposed system. Robot control is briefly introduced, various hand
and gesture detection techniques are presented. Introduction to probability
theory and basics when performing probabilistic learning are shown.

3.1 Brief robot control

The control of the robot should achieve flawless following a constantly moving
target with the end-effector. It should deal with the singularities and avoid
collisions. ROS libraries with MoveIt! interface are used (see S. 4.1.2) on
Capek workspace (see S. 4.1.2). The process of robot control is visualized in
Fig. 3.1a.

In the Fig. 3.1a can be seen the pipeline from the application to the robot
control block. Arrows represent the data which is propagated through the
pipeline and the blocks are described below. The Fig. 3.1b represents, what
is needed to be done until the joint states are published.

In live trajectory execution, the robot path is constantly updated to follow
the moving target. There is a request for execution move towards the defined
path pose p. Pose is made up of position and orientation (see Tab. B.1). This
is output from Path Pose block.

These poses are converted to joint states using an inverse kinematics
(see Eq. 3.1) in Inverse kinematics block. Joint states represent the angle
orientations of each robot joint. Operation can be written as j = IK(p) (3.1),
where j = (j)Nn=1 are joint states with N depending on the number of robot
joints. In the case of the KUKA iiwa N = 7, IK function is represented
by Relaxed IK module [19], it deals with disjointed end-effector jumps and
self-collisions, for more see S. 3.1.1.
Trajectory action client [20] is used to send trajectory segments to the

robot and update them on demand. The robot interpolates the trajectories
using quintic splines and executes them using the position control interface of
the robot. The iiwa Fast Robot Interface is then used on the real robot. The
input of this block is a list of joint states with timing. This array can be filled

9



3. Theoretical background ................................

(a) : Publishing the trajectory
diagram.

(b) : ROS system diagram.

Figure 3.1: Robot control diagrams. Description what blocks perform one to
another.

with joint states from the current state towards the goal state as follows:

ja =
(
0.1 · i · (jg − j0) + j0

)N
i=1

, (3.2)

where jg is the set of goal joint states, j0 is the array of current joint states.
ja is two-dimensional array of joint states across time and N is the tens of
percent of execution between the stated joint values and the goal ones. N
can be assigned to value N = 5, then every trajectory update will update
Joint state trajectory only to half of a goal, which in live tracking results in
finer movements.

Trajectory is made of ROS Joint Trajectory message type (see Tab. B.3).
It contains an array of trajectory points. These trajectory points hold the
joint states of the manipulator from the present to goal joint state positions.

Path completion feedback includes the received robot joint states. To get
the pose of end-effector again, the forward kinematics task is performed.

Exemplary computation of Forward Kinematics task for Kuka iiwa manip-
ulator can be written in terms of Denavit-Hartenberg (DH) notation, which
is representated by homogeneous transformations by propagating from the
first to the last joint [21]. The homogeneous transformations is computed
as Eq. 3.3, where Rot is function for rotation matrix and Tran is function
for translation matrix, the parameters for the function are DH parameters:
θi, di, ai−1, αi−1, where θi is the angle of ith joint, i ∈ {1, . . . , 7}. di, ai−1
represents the translation motion and αi−1 represents the rotational motion.

10



.................................. 3.1. Brief robot control

The homogeneous matrix is created in Eq. 3.4 and Eq. 3.5. The propagation
from the first angle to the last by multiplicating the homogeneous matrices is
given by Eq. 3.6. Lastly, the real translation and rotation values of a specific
robot are marked into Tab. 3.1.

Ti = Rot(x, θi) · Tran(zi, di) · Tran(x, ai) ·Rot(x, ai) (3.3)

Ti =


cθi

−sθi
0 0

sθi
cθi

0 0
0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 ·


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1


(3.4)

Ti =


cθi

−sθi
cαi sθi

sαi aicθi

sθi
cθi
cαi −cθi

sαi aisθi

0 sαi cαi di
0 0 0 1

 (3.5)

T 0
7 = T 0

1 · T 1
2 · T 2

3 · T 3
4 · T 4

5 · T 5
6 · T 6

7 (3.6)

θi di[mm] ai−1 αi−1[◦]

q1 0.34 0 -90
q2 0.00 0 90
q3 0.40 0 90
q4 0.00 0 -90
q5 0.40 0 -90
q6 0.00 0 90
q7 0.126 0 0

Table 3.1: Denavit-Hartenberg parameters [21].

3.1.1 Motion planning via Relaxed IK

Relaxed inverse kinematics is a real-time motion synthesis method for robot
manipulators that cannot only accurately match end-effector pose goals as
done by traditional IK solvers, but also create smooth, feasible motions that
avoid joint space discontinuities, self-collisions, and kinematic singularities
[19].

Inverse kinematics is solved as a weighted-sum nonlinear optimization
problem. Motion goals in addition to end-effector pose matching can be
encoded as terms in the sum. There is a normalization procedure such that
the method can effectively make trade-offs to simultaneously reconcile many
and potentially competing objectives. Using these trade-offs, the formulation
allows features to be relaxed when in conflict with other features deemed
more important at a given time [19].
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3. Theoretical background ................................
Relaxed IK uses neural networks to speed up the computation. Effectively,

it caches the collision checks. There is a need to set up the current robot
manipulator configuration. Learning of the neural network takes about 10
minutes based on a given CPU. Once the processing is done, it is saved into
a file and can be loaded whenever needed.

Planning contains its own collision detection. Different objects can be added
to the workspace. The neural network is then learned with that configuration
in mind. This can be used, for example, when there are some static objects in
the workspace or static objects with respect to each link of the manipulator.

3.2 Introduction about gestures

The human hand is capable of performing very diverse motions and enables
many different configurations. Some of the configurations and some motions
are used as a mean of communication, i.e., gestures. An important observation
is that gestures are not precise points in the configuration space of the hand,
but rather regions (e.g., for the gesture signalizing Fingers crossed gesture
can defined as the position of the two fingers to each other is crucial, but the
absolute location of the hand does not matter that much).

Before the gesture definitions will be presented, let us divide the gestures
by time series into two categories:. Static gestures. Dynamic gestures

Static gestures are computed from only as a single time sample (frame) at
a time. Additionally, the mean values of multiple time frames can be used as
well. Dynamic gestures are computed from time multiple samples (frames).
Therefore, all time samples from the recording can be used.

Gesture definition

The main two gesture type definitions used in the thesis are Manipulative
and Semaphore gestures. The manipulative type of gestures and semaphore
ones. Definition of a manipulative gestures can be interpreted as:

“Manipulative gesture is one whose intended purpose is to control
some entity by applying a tight relationship between the actual move-
ments of the gesturing hand/arm with the entity being manipulated
[22].”

Manipulation can be in 2D, e.g., a computer mouse, or in 3D, which involves
the hand to mimic manipulation in the space of some virtual object, e.g., the
Leap Motion sensor.

Three dimensional space can serve a purpose as a 3D mouse to manipulate
2D objects, where there is a defined picking and placing zone on the third-
dimensional axis. Or the third dimension can be utilized to modulate pressure.

12



................................. 3.3. Hand bone structure

Because the robot manipulator operates in 3D, the robot end-effector can be
directly mapped to the 3D gesture space.

The definition of Semaphore gestures is stated:

“Semaphores are systems of signaling using flags, lights, or arms. We
define semaphoric gestures to be any gesturing system that employs
a stylized dictionary of static or dynamic hand or arm gestures.
Semaphoric approaches may be referred to as ”communicative” in
that gestures serve as a universe of symbols to be communicated to
the machine [22].”

3.2.1 Hand detection methods

The basis for gesture detection is to detect a hand. In the world, there exist
a lot of hand detection methods. They depend on what data are on input. If
the data on the input is a point cloud, which is a set of Cartesian points in
space, the bone structure can be obtained with RANSAC. Random Sample
Consensus is an iterative algorithm for the robust estimation of parameters
from a subset of inlierss from the incomplete data set. RANSAC type of
regression returns a lot of lines with some processing can be constructed to
the bone structure [23].

Another option is when we are working with one RGB image, the Convo-
lutional Neural network can be used to predict 2D heatmaps and novel 3D
location maps for all joints. The 2D keypoints can be retrieved after filtering
and read off the 3D pose. Per-frame estimates are combined with a stable
global pose by skeleton fitting [24]. Another approach is to model and detect
the hand bone structure.

3.3 Hand bone structure

From Osteologist point of view, the hand can be extracted into bones as in
Fig. 3.2.

Another approach is to model and detect the hand bone structure using
two infrared cameras as it might be with Leap Motion. Leap Motion detects
the bone structure of the hand. Specifically, it detects the following points on
the the hand. Note that every point has Cartesian coordinates P ∗ = (x, y, z),
the index will be omitted for simplicity.. Bone structure of points S ∈ {Pw, Pp, P bf}.Wrist Pw. Palm Pp. Thumb, Index, Middle, Ring, Pinkie fingers P bf , (f = 1, . . . , 5),

(b=1,. . . ,4)..1. Tip point of bone Metacarpal P 0
f
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3. Theoretical background ................................

Figure 3.2: Bone structure. [1]..2. Tip point of bone Proximal P 1
f..3. Tip point of bone Intermediate P 2

f..4. Tip point of bone Distal P 3
f

3.4 Probability theory introduction

Let’s define a Random variable A. The realization of this variable is not
known and can have multiple values. In general, set of one or more values can
be defined as event. Probability that an event is occuring is a scalar value
in the closed interval 0 to 1. For the number 0 that event is certainly not
happening and for probability 1 of the event is certainly happening.

The probability of an event X with outcome x can be written by Eq. 3.7.

P (X = x) (3.7)

Conditional probability is defined as the probability of an event A given
that another event B is occurring:

P (A|B). (3.8)

Mathematical rules of probability can be outlined by product rule and sum
rule.

Sum rule. The probability that either A or B occurs is shown in Eq. 3.9.

P (A ∪B) = P (A) + P (B)− P (A ∩B). (3.9)

Product rule (also called the chain rule). The probability of two events A
and B occurring in parallel P (A,B) is the multiplication of the probability of

14



............................. 3.4. Probability theory introduction

one of the events and the conditional probability of the other event happening
given the first event happened:

P (A ∩B) = P (A|B) · P (B) = P (B|A) · P (A). (3.10)

Bayes’ Theorem describes inverted conditional probability. Probability of
an event A given event B can be expressed via the probability of event B
given an event A. See Eq. 3.11.

P (A|B) = P (B|A) · P (A)
P (B) . (3.11)

Probability density function can be defined as the relative probability of
areas of the space of outcomes. Probability density computed using an integral
which is shown in Eq. 3.12.

P (X ∈ A) =
∫
x∈A

pX(x)dx, (3.12)

X ∈ A means that event X is in A. Cumulative distribution function
P (X ≤ x) is defined as the probability X is less or equal to the outcome x
(see Eq. 3.13).

P (X ≤ x) =
∫ x

−∞
pX(u)du. (3.13)

Expected value E[X] of a variable X is the average value of the variable
if an infinite number of independent samples are made. Definition of the
probability density function is described in Eq. 3.14.

E[X] =
∫
xp(x)dx (3.14)

Finding the best volume by integration not with optimization.

3.4.1 Probabilistic Machine learning and Programming

The probabilistic programming is applying the above-mentioned probabilistic
rules as some generative model. The generative model can use the prior
distribution of the values as an input, the likelihood works similarly as the
conditioning of statements. The output of these methods is a posterior
distribution. In Bayesian framework, probabilities are seen as a degree of
belief based on a prior knowledge. The output of the neural network model
will grant us data as fixed and the parameters as random variables. This
means that the parameters of our model will be represented by distributions.

The posterior P (θ|y) can be evaluated using numerical methods. The
posterior is proportional to the likelihood P (y|θ) times the prior P (θ):

P (θ|y) ∝ P (y|θ)P (θ) (3.15)

When speaking about machine learning, there would be useful to define
the data structure of such networks.
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3. Theoretical background ................................
Neural network architecture

The Neural Network architecture is chosen accordingly to the type of data.
Probabilistic machine learning is based on Bayes’ theorem (see Eq. 3.11),
which is computed in separate units. The unit nodes are called perceptrons,
resp., neurons. All units in parallel then form a specific layer. The length of
the layer is then denoted as hidden layer size. More layers in serial then form
a multilevel neural network model.

Now the used methods of probabilistic programming will be presented.

3.4.2 Bayesian inference processes

Inference problem requires statements about the value of an unobserved
(latent) variable x based on observations y which are related to x, but may
not be sufficient to fully determine x. This requires a notion of uncertainty.
In the real world, there does not exist a fully certain event. We can specify
priors to inform and constrain our model and get the uncertainty estimation
in the form of a posterior distribution.

Firstly, the proposed method (see Ch.6.4.1) is called variational inference
that is used to quantify the uncertainty in the weights of deep neural networks.
It makes informed predictions for the gesture recognition dataset. More in
S. 3.4.3. Secondly, Markov Chain Monte Carlo is used for generating result
samples from the posterior distribution. More in S. 3.4.4

3.4.3 ADVI

Automatic Differentiation Variational Inference. Probabilistic modeling is
iterative. A scientist deposits a simple model, fits it to the data, refines it
according to the analysis, and repeats. It is a Gradient-Based method. Some
systems defined without inference models would be hard to implement using
conventional frameworks.

Variational Inference minimizes the Kullback-Leibler divergence which is
shown in Eq. 3.16.

KL(q(θ)||p(θ, y)) =
∫
q(θ, φ) q(θ, φ)

p(θ), y)dθ ⇒ Eq
(
log

(
q(θ)
p(θ|y)

))
(3.16)

from the approximate distributions, but we cannot calculate the true
posterior distribution [25].

Evidence lower bound (ELBO) is calculated by minimizing the Kullback
Leibler divergence (see Eq. 3.17, Eq. 3.18).

KL(q(θ)||p(θ,D)) = −(Eq(logp(D, θ))− Eq(logq(θ)) + logp(D)), (3.17)

ELBO = (Eq(logp(D, θ))− Eq(logq(θ)). (3.18)
Optimization of the model includes tuning the parameters by examining

the posterior distribution, over the weights.
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.......................... 3.5. Dynamic Time warping introduction

3.4.4 MCMC sampling

A Markov Chain is a mathematical process that undergoes transitions from
one state to another. Key properties of a Markov process are that it is random
and that each step in the process is “memoryless” in other words, the future
state depends only on the current state of the process and not the past. ??

MCMC is particularly useful in Bayesian inference because of the focus
on posterior distributions which are often difficult to work with via analytic
examination. In these cases, MCMC allows the user to approximate aspects
of posterior distributions that cannot be directly calculated (e.g., random
samples from the posterior, posterior means, etc.). [26]

In modeled neural network system, this process is used to make samples
from posterior distributions.

3.5 Dynamic Time warping introduction

Dynamic Time Warping is used to compare the similarity or calculate the
distance between two arrays or time series with different lengths and speed
[27]. Time warping can be applied to video, audio, or any linear sequence of
data, meaning that it can be interpreted as n-dimensional series.

The time warping method has its own rules. Every index from the first
sequence must be matched with one or more indices from the other sequence.
The first index from the first sequence must be matched with the first index
from the other sequence and the last index from the first sequence must be
matched with the last index from the other sequence. The mapping of the
indices from the first sequence to indices from the other sequence must be
monotonically increasing. If j > i are indices from the first sequence, then
there must not be two indices l > k in the other sequence, such that index i
is matched with index l and index j is matched with index k [27]. All these
rules have to be satisfied, the minimal cost is computed as the sum of the
absolute differences, for each matched pair of indices, between their values.
In the Lst. 3.1 is example code of Dynamic Time Warping code written in
Python language.

1 def dtw(s, t):
2 n, m = len(s), len(t)
3 dtw_matrix = np.zeros ((n+1, m+1))
4 for i in range(n+1):
5 for j in range(m+1):
6 dtw_matrix [i, j] = np.inf
7 dtw_matrix [0, 0] = 0
8

9 for i in range (1, n+1):
10 for j in range (1, m+1):
11 cost = abs(s[i -1] - t[j -1])
12 # take last min from a square box
13 last_min = np.min ([ dtw_matrix [i-1, j], dtw_matrix [i,

j-1], dtw_matrix [i-1, j -1]])
14 dtw_matrix [i, j] = cost + last_min
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3. Theoretical background ................................
15 return dtw_matrix

Listing 3.1: Time-warping sample code in Python. The most important is line
13, where the last minimum from square box is obtained [28].

In the dynamic gesture detection is not only used the Dynamic Time
Warping method, but also the Euclidean method, which gives Euclidean
distance between two points in the time order of the trajectory. Differences
between these two methods in an organization of points can be seen in Fig. 3.3.

Figure 3.3: A comparison of Euclidean distance a) with Dynamic Time Warping
b) for time series. [2]

3.6 ProMP background

Probabilistic movement primitives is well-established approach for represent-
ing robot motion skills and blending between motions [17]. It is the right tool
to provide generalization to new situations and temporal modulation of the
movements.

Furthermore, there is an ability to sequence more shorter motion primitives
to create longer ones. Probabilistic movement primitives represent a proba-
bility distribution over trajectories. Trajectory distribution can be defined
in various spaces such as joint-space, task-space, etc. However, the most
reasonable approach for our situation is to use the joint-space.

ProMP encodes the optimal behavior in the case that the system operates
with linear dynamics. In contrast to the deterministic approaches, it does not
encode only the mean solution, but introduces the variability of the movement.
The important key is to model the coupling between the individual DOF
(degree of freedom) of the robot by estimating the covariance between different
DOFs.
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..................................3.6. ProMP background

Pseudocode of the implementation of ProMPs used in S. ?? can be seen in
the Lst. 3.2.

1 Data : A s e t o f N t r a j e c t o r i e s with p o s i t i o n o b s e r v a t i o n s Yi ,
i = 1, . . . , N at time ti

2 Input : Number o f b a s i s f u n c t i o n s K, Bas i s function width h ,
Regres s ion parameter λ

3 Output : The mean µw and covar iance Σw o f p(w) ∼ N (w|µw,Σw)
4
5 foreach t r a j e c t o r y i do
6

7 Compute phase : zi = ti
te

i
nd

8 Generate b a s i s : Ψt = f(zi,K, b)
9 Compute the weight vec to r wi f o r t r a j e c t o r y i

10

11 wi =
(
ΨT

t Ψt + λI
)−1

ΨT
t Yi .

12 end
13 Fit gauss ian over the weights vec to r wi

14

15 µw = 1
N

∑N

i=1 wi

16 Σw = 1
N

∑N

i=1(wiµw)(wiµw)T

Algorithm 3.1: : Probabilistic Movement Primitives, Learning trajectory
movements by Alexandros Paraschos [17].
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Chapter 4
Material and methods

In this chapter are presented the used materials and methods to build the
solution. Used devices for detection, the type of used robot manipulator,
probabilistic package, and more are described in this chapter.

4.1 Experimental setup

The components of the setup are mainly composed of two units. The sensing
device Leap Motion Controller and the robot manipulator KUKA iiwa LBR.
The setup can be visualized as Fig. 4.1. The overview of the setup is then
presented in the next chapter Ch. 5.

Figure 4.1: Leap Motion controller with Kuka iiwa LBR manipulator, Experi-
mental setup [29] (edited)

4.1.1 Leap Motion Controller

In this experimental setup, Leap Motion Controller is used to track hand
bone structure.
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4. Material and methods .................................
Leap Motion Controller is a small device approximately the size of a thumb

(see Fig. 4.1). It connects to a computer by USB port. Inside of it, there are
two infrared cameras and multiple LEDs. The LEDs illuminate your hands
with infrared light invisible to the human eye [30]. Because of a narrow range
of near-infrared spectra at a wavelength of 850 nanometers, they can stand
a high range of environments and lighting conditions. LEDs are pulsing to
lower the power and increase intensity. The interaction zone is extending
from a device in a 140◦ × 120◦ and extends from 10 cm to 60 cm. It takes
the form of an inverted pyramid for this kind of model [31]. The device has
its own local memory and computes the most necessary operations such as
resolution adjustments. The real tracking software is then computed on the
computer. Detection accuracy is about 200 µm [32].

Leap Motion Controller software for bone recognition provides better hand
tracking with every version. The current detection version Orion does not
provide gesture detection itself. Respective gesture recognition is described
in the Ch. 5.

Leap Motion Controller does not use point clouds to compute bone structure.
Point clouds are substituted for multilevel algorithms instead.

4.1.2 Kuka iiwa LBR manipulator

The IIWA LBR is an industrial seven degree-of-freedom (DOF) serial manip-
ulator (see Fig. 4.1) intended for human-robot collaboration [33]. Internal
joint torque sensing is provided, the robot is constructed with safety features
in mind to be able to operate with humans in the robot reach area.

Capek workspace

The robot configuration and environment is using the Capek workspace. The
workspace is available on GitLab. It manages the communication with the
robot and tools for its control. The whole system presented in Ch. 5 is
therefore connected and ready to execute on the real manipulator version.

Modelling the scene objects

The objects for all scenes were modelled on Sketchup software [34]. The
models include a drawer with the shell and three inner sockets and the button
inner part and its outer shell.

ROS

Robot operating system (ROS) are open source libraries and tools for working
with a robot manipulator and are used in the implementation of the whole
system. ROS incorporates drivers, state-of-the-art algorithms, and powerful
developer tools. For communicating between nodes, ROS messages are used
(some major definitions of ROS messages are in Ch. B).
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ROS toolkit MoveIt! is used to help with some robot operations and
functions. Some scene interface functions such as attach item and detach
item are used from the toolkit.

4.2 Modeling of probabilistic network

4.2.1 Probabilistic package PyMC3

PyMC3 is a probabilistic programming package for Python that allows users
to fit Bayesian models using a variety of numerical methods, most notably
Markov chain Monte Carlo (MCMC) (see Sec. 3.4.4) and variational inference
(VI) (see Sec. 3.4.3). Its flexibility and extensibility make it applicable to a
large suite of problems. Along with the core model specification and fitting
functionality, PyMC3 includes functionality for summarizing output and for
model diagnostics [35].

The main competitor to PyMC3 package is Stan [36] which offers modelling
of probabilistic networks as well. PyMC3 and Stan belongs to the most
modern tools to construct and estimate probabilistic models. It is based
on Theano which optimizes the performance of computation and can utilize
computer GPU. The main objective of these methods is to generate the
inference from specified probability models.

4.2.2 ProMP

Probabilistic movement primitives have a lot of interpretations with different
functions and approaches. For our situation, it is best to stick to a more
verified and valued interpretation by Alexandros Paraschos [17], implemented
by Michael Mathew [37]. The Probabilistic model for representing the trajec-
tory distribution that is based on a basis function representation is defined in
S. 3.5.

4.3 How to read Confusion matrix

To evaluate the quality of the gesture detection, we need a measure which
will tell us how accurate the classification is. For this purpose were created
confusion matrices.

Confusion matrix is created from an array of predicted gestures and an
array of real gestures. These arrays are converted to a matrix with the length
of the number of gestures, where one axis denotes the predicted gestures and
the other real gestures. Example confusion matrix is shown in Fig. 4.2, where
accuracy of classifying individual animals is shown. For example, the cell
(1,3) says that in one case (6.67%) a actual bird is recognized as a dog. The
last column says in how many cases were individual animals predicted, the
last row says in how many cases were the actual animals appearing (e.g., a
dog was actually appearing in 6 cases, but detected only in 5 cases). The
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overall accuracy of the detection is shown in the bottom right corner, in this
case it is 60%, and is computed as a sum of the accuracies on the diagonal.

Confusion tables are generated with tool from pretty print [38].

Figure 4.2: Example confusion matrix. Read from left to right. Predicted two
samples of cat, when the actual object is dog, wrongly predicted. Predicted four
samples of dog when actual object is also dog, correctly predicted.
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Chapter 5
System overview

This chapter introduces the whole system top-down. It gradually analyzes
the data flow and the processing steps. Later chapters will then describe
the individual processing steps. The system processes can be displayed in
Fig. 5.1.

Figure 5.1: Dataflow Diagram, individual processes are described in S. 5.1.
Input modules are in orange. Developed modules are in red and used processing
and output modules are in blue color. Memory block in black color is not a
thread. It is a shared space memory that the nodes are interacting with, all
data are stored here. Hand data are received from Leap Data Frame block which
illustrates Leap Motion API and serves as an input. Then data are processed in
Processed Frame Variables block. Each Deterministic and Probabilistic gesture
recognition has its own computational thread. Main program nodes are individual
threads inside the program. Nodes outside Main program block are ROS nodes
and communication is done via ROS messages. The main ones are noted on the
connections, the connection names are the passed data names.
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5.1 Setup overview and dataflow

Fig. 5.1 shows the individual components of the system and the data passed
between the modules. There is no main component in the system. Every
module has its own thread which serves its own purpose. The system can be
summarized as broadcasting the Leap data (Leap Motion Frame) through
processing (Processed Frame Variables), saving the data in storage database
(Memory), computing the inverse kinematics (Inverse kinematics computation)
and passing the data to robot (Robot control and Joint States Publisher).

All these components are described in detail below in S. 5.1.

Leap Data Frame node

This node takes the data from Leap Motion API. API is installed on computer
and takes data from Leap Motion hardware device and computes the bone
structure as the frame. The frame data (see Tab. 5.1) is the output of this
block. These data are outputed in the block with a frequency between 90 to
110 frames per second. It depends on a user CPU power.

Processed Frame Variables node

This block takes the frame data (see Tab. 5.1) as an input and processes it
as shown in S. 5.2. Function prepares the data for gesture recognition. The
output of this block is processed frame (see Tab. 5.2) and it is saved in share
Memory block. This computation step is executed at the same frequency as
Leap Data Frame node (90− 110 Hz) and takes only few µ seconds.

Robot control node

The Capek workspace (see Ch. 4.1.2) is used in this node. The input are joint
space variables (see Tab. 5.6) of robot configuration. The function of this
node is to compute the control values that are sent to robot (Joint States
Publisher) as Joint Trajectory message (see Tab. B.3).

Deterministic and Probabilistic gesture detection modules

These modules perform the calculation of the detection. The input is Processed
Frame Variables (see Tab. 5.2). The outputs are Tab. 5.3 for deterministic
approach and Tab. 5.4 for probabilistic approach.

Inverse Kinematics module

The input for this module is the goal pose (see Tab. 5.5). Output is joint
space variables (see Tab. 5.6). This module performs the inverse kinematics
task on data that are placed into shared memory and returns the results back
to the shared memory. The task is performed with Relaxed IK (see Ch. 3.1.1)
in realization.
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Memory

It is the only node which is not a thread but only a shared memory. All
data are saved in this block. Saving and loading of variables to the shared
space are atomic processes, therefore threads are safe and cannot disturb
each other. Data of frames and processed frames are saved as a ring buffer to
keep the memory usage limited.

It has determined Buffer length, which can be changed depending on the
situation. The default capacity is 300 variable units, which is approximately
equivalent to 4 seconds of Frame data depending on CPU configuration.

Based on the use-case, the Buffer length can be adapted. For example,
extend the buffer when longer periods of data are required to store. One exam-
ple can be the detection of gestures with long duration. The Buffer length
can be extended based on the computer RAM volume.

5.1.1 Program configuration and communication between
nodes

Capek workspace (see Ch. 4.1.2) is using the language Python 2.7, therefore all
nodes except probabilistic learning are using Python version 2. Probabilistic
learning with PyMC3 is using Python 3, therefore one node is using the newer
version. This node is communicating with others via ROS messages.

Data contents are the names defined in Fig. 5.1 as the connection names.
Now follows the description of each of the data content.

Frame

This data flows from Leap Data Frame node and Processed Frame Variables
node. Its contents are shown in Tab. 5.1. They are received values from Leap
Motion API.

Name Type

Hand Bone structures (S)Hn=1 Float[] (see S. 3.3)
Hand id hid = (hid)Hn=1 Integer[]

Hand confidence hconf = (hconf )Hn=1 Float[]
Time of recording trec Timestamp (see Tab. B.2)

Table 5.1: Frame F definition. Note that Bone structure is extracted from
frame, other variables (e.g. infrared picture omitted). H denotes number of
hands visible by Leap Motion and [] denotes a vector specification.

Processed Frame

This data is the output of Processed Frame Variables node and are saved
to the shared Memory block. The deterministic and probabilistic gesture
detection modules takes this data from the shared memory as an input.

5.2
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Name Type

Hand visible hvis Boolean
Fingertips distances dnorm (see Eq. 5.11) Float[], len. 30

Fingers, wrist angles ed (see Eq. 5.7, Eq. 5.7) Float[], len. 42
Cartesian hand velocities vpmax (see Eq. 6.26) Float[], len. 3

Palm pose Ppose = {Pp, Po} Pose (B.1)
Time of last stop tstop [s] Float

Fingertip Cartesian positions P 3
f∈{1,2,3,4,5} Float[], len. 15

Time of recording trec Timestamp (description, B.2)

Table 5.2: Processed frame P definition, saved twice for left and right hand,
other hands are discarted, [] denotes a vector specification.

Recognition outputs

Outputs from deterministic and probabilistic gesture recognition can be seen in
tables Tab. 5.3 and Tab. 5.4. The output from Deterministic approach is not
a one-hot encoding, because two or more gestures can be on at the same time.
Deterministic gesture recognition can be performed with a frequency higher
than 30 Hz. It is less computationally demanding than the probabilistic one
which is performed strictly with frequency 10 Hz. The same for static gestures
as for the dynamic ones.

Name Type

Gesture toggle g = (g)Gn=1 Boolean[], len. G
Index of highest gesture probability Integer

Table 5.3: Deterministic gesture recognition output, where G is number of
gestures, [] denotes a vector specification.

Name Type

Gesture probability g = (g)Gn=1 Float[], len. G
Index of highest gesture probability Integer

Table 5.4: Probabilistic gesture recognition output, [] denotes a vector specifica-
tion.

Inverse kinematics communication

The inverse kinematics block is communicating between the main memory
block. Inverse kinematics topic operates with strict frequency of 10 Hz.
Input property of the inverse kinematics block is given in Tab.5.5 and output
properties are given by 5.6.
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Name Type

Goal pose for robot end-effector Pose (see Tab. B.1)
Time of goal pose Timestamp (see Tab. B.2)
Sequence number s Integer

Table 5.5: Inverse kinematics node input. One sample of stream of close
end-effector poses.

Name Type

Joint states (7 DOF) j = (j)7
n=1 Float[], len. 7

Table 5.6: Inverse kinematics node output. One sample of stream of Joint states
for given robot configuration, [] denotes a vector specification.

Robot control communication

The output of Joint States Publisher block are real, resp. simulated, variables
such as joint state, velocity, and effort for each joint, see Tab. B.4. Robot
control publishing operates with strict frequency of 10 Hz.

5.2 Processing Leap Controller data

Data from Leap Data Frame node (see. Tab 5.1), the Leap Controller API,
are received by performing the inner Leap motion algorithm of advanced
detection, similar to the algorithms from Ch. 3.2.

The data received includes sequence of Frame data structure (see Tab. 5.1)
that contains Bone Structure (see Ch. 3.3). To summarize, array of hands is
received with frequency around 100 Hz. Each hand detection consists of its
own bone structure S, which includes position for every finger’s bone joint
P bf , and positions of wrist Pw and palm Pp.

Following processes in this section takes place in Processed Frame Variables
block, note again that every point has Euler coordinates P ∗ = (x, y, z), the
index will be omitted for simplicity.

Firstly, from bone positions, direction vectors dir = dirbf = (dirf )4
n=1 are

computed:.Wrist to Palm dirw = |Pw − Pp| (5.1). Palm to Metacarpal bones dir1
f = |P 1

f − Pp| (5.2).Metacarpals to Proximal bones dir2
f = |P 2

f − P 1
f | (5.3). Proximal to Intermediate bones dir3

f = |P 3
f − P 2

f | (5.4). Intermediate bones to Distal bones dir4
f = |P 4

f − P 1
f | (5.5)

Lengths of the vectors are: len(dirw) = 3, len(dirbf ) = 60.
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The transform of direction vectors to Tait–Bryan angles can be seen in

Eq. 5.6, Eq. 5.7 and Eq. 5.8.
The angle calculations are needed, because gesture detection operates on

the angle differences.
Whole vector of angles can be written as e = ebf , f = (1, 2, 3, 4, 5), b =

(1, 2, 3, 4).

ebf1 = 0, (5.6)

ebf2 = arcsin(−dirbfy), (5.7)

ebf3 = arctan(
dirbfx
dirbfz

). (5.8)

Angles are labelled as Roll, Pitch, Yaw. These names are based on mnemon-
ics to remember the angle name and its properties. Roll angle is omitted in
gesture detection.

5.2.1 Further process of specific variables

The processing still takes place in Processed Frame Variables block. The next
values are computed from previously passed values. Additional values are
computed to serve the purpose of input for gesture recognition. Passed values
are direction vectors dir = dirbf , b = (1, 2, 3, 4), f = (1, 2, 3, 4, 5), and Euler
angles e = ebf .

Variables that will be the output of processing are the distances between
fingers d, plus normalized ones dnorm and angle differences between bone
fingers ed.

Distance between finger tips

Distance between finger tips is computed using standard Euler distances in
Eq. 5.9.

d = df =
∑

f∈0,1,2
(dir4

f )2. (5.9)

where dir4
f are the direction vectors of the last two finger bones as described

in Eq. 5.5.
Normalize distance with normalization values K1,K2. The parameters K1,

K2 were obtained from experimental tuning with method grid search in order
to have normalized values as in Eq. 5.11, dnorm (5.10) is vector of normalized
distances got from dnorm = f(d).

f : dnorm = d ·K1 +K2. (5.11)
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Number of normalized distances is the length of the combination between
fingers, where F is number of fingers and k is length of subset, which is
assigned as k = 2, see Eq. 5.12.

C = CFk =
(
F

k

)
= F !
k! · (F − k)! = 5!

2! · (5− 2)! = 10, (5.12)

therefore, the list of distances is len(d) = C = 10. Every two-finger
combination has its own index on which the value is accessed.

Angle differences between finger bones

First interpretation is using a single subtraction for each bone angle from each
previous bone. Metacarpal bone is subtracting angle between the metacarpal
bone and palm position as in Eq. 5.13.

ed = edbf = |ebf − e(b−1)
p |. (5.13)

The second interpretation converts the angles to quaternion form and
performs a multiplication between each other, resulting in a constant angle
difference, which is a useful input for gesture detection, as done in Eq. 5.14.

edq = edqbf = q(ebf ) · q(e(b−1)
p ), (5.14)

where the function q transforms Euler angles to quaternion form. Function
quaternion_from_euler from the transformation package for ROS [39] is
used. Output is a single value describing the difference between two angles.

Final list of values as input for gesture recognition

Recapitulation as a list of variables processed in this section as an input for
gesture recognition, part of Processed frame content (Tab. 5.2).. Normalized position distances dnorm (Eq. 5.10). Angle differences ed, edq (Eq. 5.13, Eq. 5.14). Palm pose Ppalm = {Ppalm, Po} (B.1). Fingertip positions P 3

f∈{1,2,3,4,5} (chap. 3.3)

Additional checks that must be performed:. The hand must be the same (same hid). When a new hand gets visible,
it receives a new id, this id is the same as long the hand stays visible.. The hand detection must have greater confidence than the set confidence
threshold. hconf > Tconf , where Tconf is a confidence threshold. Confi-
dence is received from Leap Motion frame (see Tab. 5.1) for each hand
and signals how well were bones constructed from the images. hconf is a
scalar number within an interval 0 to 1.
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There is a correlation between confidence and the orientation of a hand.

When a hand is turned down to the Leap sensor, the Leap controller will
still construct a bone position structure. However, the accuracy will be much
lower. Although the controller can predict very well the finger position if they
are not seen, it is advised to keep a hand in a direction down to the sensor.

5.3 Robot setup

This chapter describes what procedures were used when setting up the robot
configuration. For Robot control see Ch. 3.1.

Description of the robot manipulator can be defined by urdf file format
which stands for Universal Robotic Description format. It contains descrip-
tions about each joint, its types, axis, inertia constants. With attached 3D
bitmaps it can be a complete description of the manipulator. One possible
version of urdf file for iiwa configuration can be used from lbr_iiwa7_r800-
urdf-package [40].

This description, however, does not include a gripper, therefore there is a
need to include it manually. It can be done by adding this snippet to the end
of urdf file.

1 <joint name =" eef_joint " type =" fixed">
2 <parent link =" link7 "/>
3 <child link =" eef_link "/>
4 <origin xyz ="0 0 0"/>
5 </joint >
6 <link name =" eef_link ">
7 </link >

In this configuration, the joint names are therefore:
joint_names = ['joint1',..,'joint7', 'eef_joint'].
The configuration joint name has the identical named ordering. The starting

configuration is zero for all joints.

5.4 User Interface

For easy communication of the user with the system, the interface was built
(see Fig. 5.2) as a main window application. The app was built using PyQt5
library, which is Python binding for comprehensive Qt library written in
cross platform C++ language and therefore it is compatible on all platforms
including Windows, Linux and even Android and iOS.

The purpose for making an application was firstly to visualize real-time
responses from gesture recognition systems. Secondly, to manually operate
the robot control and configuration values, which is difficult to do from the
command line.

Application is constructed separately from rViz interface, however it is
possible to be used as an rViz panel plugin in the future.

The description of the developed application can be written with bullet
points:
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.................................... 5.4. User Interface

Features of the application. Application can have a custom size, the side panels will adjust to it. Toggling view - view of the gesture outcomes can be turned off, if the
user wants to see only the hand visualization or turned on if the user
want to see gesture detection results. Responsiveness - Application is always connected (if possible) to both
Leap Motion and robot workspaces and plots live system behaviour

Pages of the application

The application consists of the following pages:.Main page (see Fig. 5.2). Configuration page (see Fig. 5.3)

Figure 5.2: Main page of the application.

List of functions of the application. Visualisation of the observations. Visualisation of the gesture on/off value. Visualisation of the bone structure
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Figure 5.3: Configuration page of the application, you can see adjustable sliders,
which are operated by hovering over slider. Sliders can be adjusted to hold value
of any property.

. Change between Main Mode, Live Mode and Path. Play/Stop path execution. Toggle fixed orientation of the end-effector. Change scenes. Change work-spaces. Record confusion matrix. Record new datasets. Inverse kinematics precision test

5.5 Defined manipulation workspaces

The n-DOF robot has a given workspace where it can operate (see Fig. 5.4).
Additionally, for our use case, we can define several custom work spaces. In
our case, we decided to define three work spaces. They are above, wall and
table, see Fig. 5.4. These work spaces are self-defined by maximizing the reach
of the manipulator and have the following properties.

Manipulator workspace called Above is defined by a rectangle with a starting
point rects and length rectl as in Eq. 5.15.

rects = (−0.35,−0.35, 0.6), rectl = (0.7, 0.7, 0.55). (5.15)
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Figure 5.4: Workspace of KUKA iiwa [41]. The additional workspaces wall,
above, and table are visualised by red rectangles, note that wall and table work-
spaces can be on any pose side.

Default orientation of an end-effector for this workspace is defined in
Eq. 5.16.

x = 0.0, y = 0.0, z = 0.0, w = 1.0. (5.16)

Manipulator workspace called Wall is defined by a rectangle with a starting
point rects and length rectl as in Eq. 5.17.

rects = (0.4,−0.2, 0.2), rectl = (0.3, 0.4, 0.55). (5.17)

Default orientation of end-effector for this workspace is defined in Eq. 5.18.

x = 0.5, y = 0.5, z = 0.5, w = 0.5 (5.18)

Manipulator workspace called Table is defined by a rectangle with starting
point rects and length rectl as in Eq. 5.19.

rects = (0.4,−0.3, 0.0), rectl = (0.3, 0.6, 0.6). (5.19)

Default orientation of end-effector for this workspace is defined in Eq. 5.20.

x =
√

2/2, y =
√

2/2, z = 0.0, w = 0.0. (5.20)

5.5.1 Leap workspace definition

This is the workspace in which hands can operate, resp. The Leap Motion
Controller can see them and it is guaranteed that they will stay in view. This
area is called the Interaction Box (see Fig. 5.5). Its center is 20 cm from the
controller upwards. And its lengths are 23.5 cm, 15 cm, 23.5 cm.
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Figure 5.5: Interaction box of Leap Motion Controller [3].

5.6 Dataset

To enable the evaluation of our system, a dataset was created. It was created
with emphasis on variability and with no false categorized samples that would
deceive the learning process. It serves a purpose only for probabilistic types
of recognition.

The main dataset contains around S ≈ 50 recording samples for every type
of G = 14 gestures, resulting in more than 600 record samples in the learning
dataset. Every sample has a length set to 300 time samples, which is always
longer than one second. Every time sample contains the processed time frame
of observations.

One recorded a data sample for a previously determined recorded gesture.
Therefore, one sample recording is recorded for one specific gesture from the
list, where Gs = [Grab, Pinch, Point, Respectful, Spock, Rock, Victory, Swipe
Up, Swipe Down, Swipe Left, Swipe Right, Pin, Touch, Rotate]. Recordings
are stacked, this is also the order of gestures in the dataset. There is no field
where the type of gesture is saved. The type of gesture is determined by
the computer directory. with time sample length T consists of one Processed
frame P data (see Tab 5.2), therefore: Dr = (P)Tt=1.

All recordings for one gesture are Dg = (Dr)Ss=1, then the whole learning
dataset is: D = (Dg)Gg=1. More about gestures written on Ch. 6.

Gesture recognition module then has an option what values from Processed
frame P will use. Two variations of the P utilization are created:..1. User defined - contains 12 values, which are deterministically computed:

open/close of fingers ocf and normalized distances between fingers dnorm
(some distances are omitted for simplicity in this option)..2. All defined - contains 87 values, which includes: Wrist to hand angle
differences edw, finger angle differences propagated from palm node to
the end of a fingers ed, fingertip differences combinations dnorm..3. Palm points Pp - contains 300 values, trajectory of Cartesian points by
time with length 100

36



....................................... 5.6. Dataset

Figure 5.6: Example of dataset recording, note that the enclosed RGB picture
is only for illustration from dataset recording process, it is not included in the
dataset.

Each sample recording of n seconds is saved in a separate file with the
extension ∗.pkl, where Python classes can be saved in a raw form. The saving
and loading of the file is made with a data serialization package called Pickle.
Further work would involve saving data to some general form, however, this
method can be superior in a way for its simplicity of saving and loading. The
possibility to delete any chosen recorded sample is also welcomed.
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Chapter 6
Gesture recognition

In this chapter, deterministic and probabilistic approaches to gesture recogni-
tion and their processes are described in detail. The experiment processes
and their results are also depicted in this chapter.

This chapter concentrates on implementing Deterministic and Probabilistic
gesture recognition block seen on Fig. 5.1. Processed frame P (see Tab. 5.2) is
the input of this block and it can be reduced based on data utilization choice
5.6. The main output of these blocks can be indices of the highest gesture
probability. Complete outputs are in Tab. 5.3 for deterministic output and
Tab. 5.4 for probabilistic one.

Gesture detection from a processing point of view is represented in Fig. 6.1,
every gesture processing has some input configuration. With this configura-
tion, the specific gesture inner function is performed, the output of a function
is the output of a given gesture.

Figure 6.1: Gesture processing diagram.

6.1 Defined gestures

Static gestures were picked as the most (most of the gestures from [42] and
few from [43]) recognized gestures throughout the world. The list of chosen
static gestures is (see Sec.6.3.1 for more detailed description).

When these gestures are detected, they can trigger any action which would
be assigned to them. For example Grab gesture picks an object, Point gesture
switches the view mode or the Victory gesture can turn on motor. Gestures
are easy to demonstrate and they are perfect for testing detection methods.

From the perspective of robot control, they serve a purpose as semaphoric
gestures. They trigger the assigned action of choice and need. There is many
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functions of semaphoric functions such as: Pushing the button only when
Point gesture is turned on. Grabbing the drawer socket only when Grab
gesture is on.

There need to be clarified that further types of gestures are intended for
gesture detection, testing, and variability. Furthermore, there is a possibility
to control the robot with them.

.Grab

. Pitch

. Point

. Respectful

. Spock

. Rock

. Victory

. Italian

Defined dynamic gestures are chosen based on reliability and comfort in
performing them. They are based on preliminary testing. See S. 6.3.2 for the
detailed description.

. Swipe. Left. Right. Up. Down

. Pin

. Touch

. Rotate

In next S. 6.3, we introduce a deterministic approach to detect these
gestures from sensor data. Later, in S. 6.4.1, we develope a probabilistic
gesture classification pipeline.

Detection assumptions

Basics and definitions of gestures (see Ch. 3.2) are used in this chapter. On
top of that, some assumptions were made. Difference between data between
static and dynamic gestures:. Static gestures are computed from only one sample (frame) at a time.

They capture the pose of a hand in every time sample. There is a need
for only one Processed frame P (from Tab.5.2).
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. Dynamic gestures are computed within the time horizon. Therefore, all
Processed frames P are used in the dataset, ∼ 50−100samples per second,
more on the dataset in Ch. 5.6.

6.2 Using value measures to evaluate gestures

Because the later interpretations are detecting the only Semaphoric type
of gesture, in this chapter is presented a short jump to the value type of
measures, e.g., the output of the gesture is a real number.

There is an option to detect the gestures using other metrics than the
logical values presented in the previous S. 6.3.1. One option is to use value
measures, which can provide real numbers as output. They fall into a group
of Manipulative gestures with one dimension (definition on Ch. 3.2).

An example of implementation is using distances between fingers to set
values. In the proposed system, it can be demonstrated by using the distance
from the thumb to the index finger dnorm,1−2 called Pinch (see Fig. 6.2).
Values can be for specific purposes normalized, namely, from zero to one.
The reason for doing that is the ability to apply the measure to any scale in
the future and secondly to make the measure independent of hand size. It
is done with Eq. 6.1. The position of the end of the fingers must be precise,
therefore for this pose, a rotation downwards of the hand is advised.

p∗ = p− pmin
pmax − pmin

, (6.1)

the formula transforms the sensed values to a normalized output, where p
can be assigned to the distance from the thumb to the index finger, previously
defined in Eq. 5.11, so p = dnorm,1−2, pmin is the minimum distance measured
with Leap Motion set by default to pmin = 0[mm] and pmax is maximum
distance measured with Leap Motion set by default to pmax = 100[mm] and
is updated if bigger number is observed.

As it has been said, for applying the measurement, a certain mode must
be active to proceed the user to execute the measurement. This is done to
avoid the measurement to be active all time.

Figure 6.2: Pinch measure example.

6.3 Deterministic approach

In this section, we present an engineering approach to gesture recognition. For
each gesture, a set of conditions on the sensor data is identified via analysis
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of the gesture. If all conditions are met, the gesture is reported as detected.
This approach depends on tuning the conditions manually, which is one of its
greatest drawbacks. We use the results achieved with the method described
in this section as a baseline.

The deterministic approach involves developing a processing and detection
intuitively. Weights are tuned with live testing. Weights are tuned by
performing a gesture and then marking every observation for a different
configuration and then updating the values.

In the next sections (S. 6.3), the values from Processed frame are extracted.
Features such as open/close a finger and finger touches are computed. These
values will further be used in the detection.

Feature extraction and processing

As an input, the Processed frame P is used as defined in Ch. 5.1. To
distinguish individual gestures, we perform some operations on top of the
data received from Processed frame. The basic operation as the output feature
is determining the orientation of individual fingers. Orientation meaning of
each finger is up or down, as it can be seen in Eq. 6.2, computed from the
angle difference between fingers.

oc = ocf = q(e1
f ) · q(e4

f ), (6.2)

where ocf is number for each finger f , for each finger is kept a number
between 0 and 1, where the value of 0 is for the closed finger and the value of
1 is for the open finger. e1

f are Euler angles for first bones for each finger and
e4
f are Euler angles for the last bones for each finger, both computed from
the direction vectors in Fig. 6.5a. q is Euler angles to quaternion function
described before.

Boolean value for open/closed fingers ocb is expressed as the condition with
tuned threshold values and are debounced using a hysteresis (see Fig. 6.4),
therefore there is a separated turn on threshold and a turn off threshold
(both turn on and turn off are used in ocb and db features), as it can be
seen in Eq. 6.3 and Eq. 6.4. The hysteresis is only considering the value
and not the time, because the fingers can move very quickly and there is no
intention to slow the process down by the possible time hysteresis.

(a) : Proximal d and
Distal d′ bones direc-
tion vectors.

(b) :
ocb =
(0, 0, 0, 0, 0)

(c) :
ocb =
(1, 1, 1, 1, 1)

Figure 6.3: The feature rm example demonstration.
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ocbon = ocbf,on = ocf ≥ OCBf,on, (6.3)

ocboff = ocbf,off = ocf < OCBf,off , (6.4)

where ocbf is Boolean and OCB are tuned thresholds for every finger.
From the fingertip, the distances of fingertips are computed touches between

individual fingers. If the touch Boolean db is True, then the selected two
fingers are touching each other, see Eq. 6.5 and Eq. 6.6.

dbon = dbf,on = dnorm,f > TCBf,on, (6.5)

dboff = dbf,off = dnorm,f < TCBf,off , (6.6)

where db is distance Boolean for every finger and TCBf are tuned thresholds
for every distance combination.

Figure 6.4: Applied Boolean hysteresis.

6.3.1 Static gesture recognition

Here is presented how static gestures are determined using a deterministic
approach with the following logical equations. Note that they are Semaphoric
gestures, which means that in these representations, they are either present or
not present, they do not output any other value. In terms of a deterministic
approach, the formulation does not need any other measurement.

After performing these operations, we obtained a list of Boolean values for
every gesture. If there is a need to determine and pick only one gesture with
the most likelihood of happening, the system of priorities can be applied.

All gestures follow the same pattern to switch on and off. geston =∧
f∈Fgest f and gestoff = ∨n

f∈Fgest ¬f , where Fgest is the set of features selected
for gesture detection.

For all static gestures, the orientation of the hand is irrelevant, while it is
advised to point towards the sensor due to better accuracy.
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(a) :
ocb1 =
0

(b) :
ocb2 =
0

(c) :
ocb3 =
0

(d) :
ocb4 =
0

(e) :
ocb5 =
0

(f) :
grab =
1

Figure 6.5: Five closed fingers correspond to five features ocb = (0, 0, 0, 0, 0)
resulting in Grab gesture.

Grab

Logic values for the turn on/off gesture are defined in Eq. 6.7 and Eq. 6.8.
For Grab gesture ocb feature (see Fig. 6.5b) containing a logical value for
each finger is used, describing the orientation of a finger (see more on S. 6.3).
Gesture is turned on if every finger is closed, it is being turned off if one of
the five fingers is opened.

grabon = ocb1 ∧ ocb2 ∧ ocb3 ∧ ocb4 ∧ ocb5, (6.7)

graboff = ¬ocb1 ∨ ¬ocb2 ∨ ¬ocb3 ∨ ¬ocb4 ∨ ¬ocb5. (6.8)

Pinch

Logic values for the turn on/off gesture are defined in Eq. 6.9 and Eq. 6.10.
The touch logical values from S. 6.3 are utilized as requirement that the
thumb must touch the index finger. The last three fingers must be open for
this gesture to be turned on. Thumb orientation is irrelevant for this gesture.

pinchon = db12 ∧ ocb3 ∧ ocb4 ∧ ocb5, (6.9)

pinchoff = ¬db12 ∨ ¬ocb3 ∨ ¬ocb4 ∨ ¬ocb5. (6.10)

Point

Logic values for the turn on/off gesture are defined in Eq. 6.11 and Eq. 6.12.
Intuitively, the index finger must be opened and the last three fingers are
closed. Thumb orientation is irrelevant.

pointon = ocb2 ∧ ¬ocb3 ∧ ¬ocb4 ∧ ¬ocb5, (6.11)

pointoff = ¬ocb2 ∨ ocb3 ∨ ocb4 ∨ ocb5. (6.12)
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Respectful

Logic values for the turn on/off gesture are defined in Eq. 6.13 and Eq. 6.14.
The index, middle, and ring fingers are opened and the thumb with the pinky
finger are strictly closed. Orientation towards the sensor is advised for this
gesture.

respon = db23 ∧ db34 ∧ ¬ocb1 ∧ ocb2 ∧ ocb3 ∧ ocb4 ∧ ¬ocb5, (6.13)

respoff = ¬db23 ∨ ¬db34 ∨ ocb1 ∨ ¬ocb2 ∨ ¬ocb3 ∨ ¬ocb4 ∨ ocb5. (6.14)

Spock

Logic values for the turn on/off gesture are defined in Eq. 6.15 and Eq. 6.16.
Thumb is not conditioned in this gesture, the rest of the fingers needs to be
opened, while the touches between the index and middle finger as well as the
ring and pinky finger must occur and the most important note is that the
middle finger and the ring finger cannot touch. This gesture is difficult for
some people to execute.

spockon = db23 ∧ ¬db34 ∧ db45 ∧ ocb2 ∧ ocb3 ∧ ocb4 ∧ ocb5, (6.15)

spockoff = ¬db23 ∨ db34 ∨ ¬db45 ∨ ¬ocb2 ∨ ¬ocb3 ∨ ¬ocb4 ∨ ¬ocb5. (6.16)

Rock

Logic values for the turn on/off gesture are defined in Eq. 6.17 and Eq. 6.18.
The index and pinky fingers must be opened, while they cannot touch. The
middle and ring finger must be closed.

rockon = ¬db25 ∧ ocb2 ∧ ¬ocb3 ∧ ¬ocb4 ∧ ocb5, (6.17)

rockoff = db25 ∨ ¬ocb2 ∨ ocb3 ∨ ocb4 ∨ ¬ocb5. (6.18)

Victory

Logic values for the turn on/off gesture are defined in Eq. 6.19 and Eq. 6.20.
The index and middle finger are opened and cannot touch each other. The
last two fingers need to be closed. Thumb position is irrelevant.

vicon = ¬db23 ∧ ¬ocb5 ∧ ocb2 ∧ ocb3 ∧ ¬ocb4 ∧ ¬ocb5, (6.19)

vicoff = ocb5 ∨ ¬ocb2 ∨ ¬ocb3 ∨ ocb4 ∨ ocb5. (6.20)
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Italian

Logic values for the turn on/off gesture are defined in Eq. 6.21 and Eq. 6.22.
This gesture has only conditions and that is, all fingers need to touch each
other. This gesture problems are depicted in conclusion 6.3.1.

vicon = db12 ∧ db23 ∧ db34 ∧ db45, (6.21)

vicoff = ocb5 ∨ ¬ocb2 ∨ ¬ocb3 ∨ ocb4 ∨ ocb5. (6.22)

Note that in this representation of gesture evaluation, more than one
gesture can be True.

Experimental results and Discussion

The implemented deterministic method is tested on the recorded dataset
(see Ch. 5.6), specifically on 7 gestures. The total accuracy of all classified
gestures is 84%, as can be seen from Fig. 6.6. The proposed system has some
flaws, especially within Grab and Pinch gesture. More tuning would bring
the percentage number up by a few percent, but it is quite unlikely to reach
the 100% accuracy mark on the whole dataset.

In this section, we present a hand-crafted gesture detection pipeline based
on the deterministic evaluation of the features observed by the Leap Motion
sensor. The results show that although we can detect many gestures in
general, the system is not very reliable. For example, the Grab gesture is
often confused with the Pinch gesture and the Point gesture is also confused
with Victory gesture. Especially, when the data returned by the sensor is
incomplete, the gesture detection precision quickly deteriorates. To seek
better accuracy, probabilistic approaches are introduced in Ch. 6.4.1.

In the process, we stumbled across a problem with Italian gestures. The
problem is that the gesture is performed with fingers upwards, and because
the sensor is mounted on the table, the gesture cannot be used, the gesture
was discarded in later applications, but it will eventually comeback if the
mounting position of the sensor would change to ceiling.

The Leap Motion detection of bones and hands relies heavily on the ability
to recognize the hand. When recognition is wrong, the bones of the fingers
are not detected properly, therefore detection of most of the gestures will fail.
This is completely understandable. Two cameras are only a few centimeters
apart and cannot detect every angle. If the cameras were longer from each
other, the detection would and could be better in some circumstances.

When the hand has a downward direction, the position of the bones is
proper. When the position is different, the position of bones can differ with
more than 4 cm apart. The values will not converge. The hand must "shake"
to regain a proper bone position.

Originally, it was intended that the Pinch gesture is realized as a contact
between the thumb and the index finger. As this was colliding with Grab
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Figure 6.6: Static gesture recognition via Deterministic approach. Confustion
matrix shows the results for each of 7 compared static gestures from main dataset
(5.6). On the results, total accuracy of properly classified gestures is 84%.

gesture and others, the configuration was edited to more similar as OK
gesture.

For maximum accuracy, the orientation of the gesture needs to be defined.
The reason for this can be observed in humans. When a person is showing a
gesture to another person, the orientation of the hand needs to be determined,
so the other person knows that the gesture concerns him, similarly, the Leap
Controller can act a similar way and respond only to gestures that are oriented
towards it.

6.3.2 Dynamic gesture recognition

The dynamic gesture introduces a time variable in detection. Recorded path
trajectory, or multiple trajectories are evaluated to detect a given gesture
from a determined set of gestures. The time variable extends the list of
possible outcomes of the gesture.

47



6. Gesture recognition ..................................
Dynamic gesture evaluation uses reduced feature space to show simpler

examples. To be more specific, for this thesis, only the Palm point is used.
Pp (the center of the palm position) and index finger position P2, the data
are from Processed frame in Tab. 5.2.

Dynamic gestures can be various types, for example, the execution gestures
can be Stroke movement, Circle rotating movement, Touch with fingers
movement, etc.

Direction vectors can serve the function of assigning the direction to
execution of Stroke/Swipe gesture. The size of the velocity can be conditioned,
for example, if the velocity of a human palm is greater than a given threshold,
a different action is triggered than when the velocity is lower. Moreover,
the rotation of the hand in time can be used to trigger some actions, for
example, rotating the end-effector towards the rotation (see implementation
in Ch. 7.1.6).

To simplify the explanation of individual gestures, in this section, we
introduce new variables included in Processed frame P (5.2).. pp = Pp = (x, y, z) - position of palm (from P). pf = P2 = (x, y, z) - position of pointing finger (from P). vp = vp = (x, y, z) - velocity of palm (from P). vf = (x, y, z) - velocity of pointing finger (computed in Deterministic

Gesture recognition block in Fig. 5.1)

Swipe in direction

Swipe gesture can be described as a stroke with the hand across space in any
direction when a certain velocity is needed. In this section, only the on/off
value for this gesture is written. This gesture can be coupled with a given
velocity and orientation to incorporate a more complex gesture.

We define the direction of a movement as a main axis. We define side axis
the other two axes of direction in Eq. 6.23.

main = (x, y, z), side = ((y, z), (x, y), (x, y)). (6.23)

Very simple implementation is to evaluate the velocity of a main axis
compared to the side axis. We start with the palm position trajectory, which
has T time samples, defined in Eq. 6.24.

pp = (pp)Tt=1, pp = (x, y, z). (6.24)

The velocity is computed by the derivation of position with respect to time.
Time series is received from the Timestamps. Finite differences are use to
approximate dpp

dt . Numpy function diff can be used.

vp = dpp
dt

. (6.25)
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Get the maximum velocity in each axis as in Eq. 6.26.

vpmax = max(vp), (6.26)
then it is compared the maximum of each axis with the tuned threshold,

as in Eq. 6.27. There is the rule that comparing the main axis needs to have
a velocity bigger than a certain threshold value and the side axis needs to
have a threshold lower than a certain value.

swipemain = vpmax,main > Tmain ∧ vpmax,side1 < Tside ∧ vpmax,side2 < Tside,
(6.27)

where swipe is a Boolean value and T are tuned thresholds.
This same method is applied to rotating in multiple directions, only dis-

tances are substituted with angles.

Finger touches

This gesture interprets touching the virtual screen ahead of a user. It is
similar to the swipe gesture with few exceptions. Firstly, the gesture is
quickly compared to the swipe. This is represented with different thresholds
of multiple velocities for gesture activation. Secondly, the static gesture Point
must be enabled when proceeding with this dynamic gesture, and thirdly, the
gesture has a stop point in the middle, therefore the velocity vector includes
one value near zero in Eq. 6.28.

stopped = min(|vp|) < sst, (6.28)
where stopped is Boolean and sst is steady state threshold is determined

by observing the velocity of the static hand pose. Euclidean norm of velocity
is computed in Eq. 6.29. Then touch Boolean is computed in Eq. 6.30.

vpmax,∗ = max
i∈[0..T ]

||vpi||2, (6.29)

touch = point ∧ stopped ∧ vpmax,∗ > Tmain. (6.30)

Finger pin

Finger pin represents the movement of the pointing finger as if the finger
would play on the piano. Note that the palm position is not moving and
only the point finger does the movement downwards. L2 norm of velocity is
computed in Eq. 6.31 and then Boolean of gesture in Eq. 6.32.

vfmax,∗ = max
i∈[0..T ]

||vfi||2, (6.31)

pin =
3∏

n=1
vpmax,n < sst ∧ vfmax,∗ > T, (6.32)

where sst is steady state threshold, T is the tuned threshold.
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Circle rotation

Circle rotation of the palm position would be described by the palm trajectory.
However, there is no need for path extraction, because there is an option to
extract data about rotation movements conveniently from Leap Controller.
Rotation information of the data frame F contains the radius of the performed
circle and its progress.

The rotation direction of the circle is calculated by comparing the circle
normal angle n with circle direction angles d with condition arccos n·d

|n|·|d| ≤
π
2 .

The condition calculates the difference between two angle orientations.

Experimental results and Discussion

Results of dynamic gestures are provided in User Study in Ch. 7.3.
The experiments were performed by 7 people, dynamic gestures 4 times.

They were asked to perform 4 types of gestures. The names are: Rotate,
Swipe, Touch and Pin gestures. The most accurate was the Rotate gesture
and the least accurate was the Pin gesture.The accuracy is also linked to user
ability in operating these actions. The users which were experienced with
computers were having higher accuracy. Even though the average accuracy
for all performed gestures were only 71%, the model can be used in real
situations when the Pin and Touch gestures are discarted from the set.

Person no. Accuracy Gestures detected

1 61% Rotate Pin
2 82% Rotate, Swipe, Touch Pin
3 72% Rotate, Swipe Pin
4 55% Rotate, Touch
5 84% Rotate, Swipe Pin
6 69% Rotate, Swipe Pin
7 74% Rotate, Swipe Pin

mean ∼ 71%

Table 6.1: User study, dynamic time gestures deterministically, 7 people were
performing 4 gestures at least 4 times. Average total accuracy of model is
∼ 71%

6.4 Probabilistic approach

In this chapter, there are presented approaches to solve the gesture detection
probabilisticly. Firstly, we propose a probabilistic neural network model for
detecting static gestures, and then the Probabilistic Movement Primitives are
used to help with dynamic gesture detection which is solved using Euclidean
distance and Dynamic Time Warping. Finally, in the chapter is presented
conclusion about the results.
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6.4.1 Static gestures recognition

The results from the deterministic approach were decent, with a total accuracy
of 85% on whole dataset for static gestures, but we seek for a higher robustness
and learnability of gestures.

For a toolbox, PyMC3 is used to model probabilistic neural networks as
described in Ch. 4.2.1. The proposed model is based on Bayes’ theorem (see
Eq. 3.11). We intended to use 2D neural networks only, therefore the problem
must be simplified to fit the 2D space, that is the reason to restrict gestures
only to static ones in this section.

Because only static gestures are recognized and all recordings in dataset
(5.6) are Processed frames to time-series. The ways how to treat the time
series are represented in the next S. 6.4.1. After that, the proposed network
layout is proposed and its specifications described. Next, the experiments
and results are presented.

Dealing with time-series

When computing static gesture recognition, there is no need for time series.
What time value for the static configuration will be used? There are few
options...1. Pick the middle sample in the time-series in presumption to have the

best gesture configuration possible...2. Average all the configurations. Even more advanced method would be
discarding the start and the end of the time-series by volume of 10 %...3. Use multiple configurations of time-series by adding them as new sam-
ples. This can radically expand the dataset. Drawback of adding every
configuration in time-series is, that data one sample to each other are not
radically different. Therefore was decided to use every 10th time-sample
as the new configuration.

Network layout

The model is composed of multiple layers. Each layer has a certain number of
random variables. The model is fully connected. The model is using function
tanh and sigmoid as an activation function. Drop-out regularization is not
presented in this model.

Input embedding

Network input variables X, y. Variable X is a 2D array, where the first
dimension denotes the number of samples and the second dimension is the
number of observations, which describes one observation. The number of
observations is the input of the input layer. They have to have the same
dimension. Variable y is a 1D integer array with the length of the number of
samples and corresponds to the true gesture ID in each sample.
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Output embedding

Classification block is used for output embedding. It is integer-based. There-
fore, using a discrete distribution. Categorization block is using Eq. 6.33.

f(x|p) = px, (6.33)
where p ∈ {0, 1, . . . , |p| − 1}, p > 0 and the elements of p must sum to 1.

Otherwise, they need to be rescaled.

Two layer model

Diagram of two-layer model is shown in Fig. 6.7 with further description
of the layer weights and their probabilistic types in Eq. 6.34, Eq. 6.35 and
Eq. 6.36.

Figure 6.7: Layers of neural network model. The dataflow through nodes
demonstrates how big the flow though nodes is. Number of samples is number
of total samples in the dataset. Hidden n nodes is variable describing number
of random variables between layers, num. of gestures is number on ouput, how
many categorized gestures are we detecting.

weights_1 ∼ Normal(µ = 0, σ = 1.0), (6.34)

weights_2 ∼ Normal(µ = 0, σ = 1.0), (6.35)

out ∼ Categorical(p = f(f(nn_input,weights_1 ),weights_2 )) (6.36)

where Normal indicates the self-titled type of distribution with initial
parameters, which are µ as mean value and σ as standard deviation. f is
Categorization block function (defined above 6.33) it is computed as f(x|p),
where p ∈ {0, 1, . . . , |p| − 1}.

More layer models

Models with more layers using the above-mentioned configuration were built
using the previous two-layer model and a determined number of weight
variables and an activation function was added.

Example code of two layer model

For closer examination and seeing the model how it really is, it is ideal to
include the neural network model written in Python language. An exam-
ple of model creation for two-layer neural network can be seen in Lst. 6.1.
Implementation of the network learning is shown in Lst. 6.2.
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1 l1_prior = np. random .randn(X.shape [1],
2 n_hidden [0]). astype ( floatX )
3 l2_prior = np. random .randn( n_hidden [0],
4 out_n). astype ( floatX )
5

6 with pm.Model () as neural_network :
7 nn_input = pm.Data(" nn_input ", X_train )
8 nn_output = pm.Data(" nn_output ", Y_train )
9

10 weights_1 = pm. Normal (" w_in_1 ", 0, sigma =1,
11 shape =(X.shape [1], n_hidden [0]) , testval = l1_prior )
12 weights_2 = pm. Normal (" w_2_out ", 0, sigma =1,
13 shape =( n_hidden [0], out_n), testval = l2_prior )
14

15 act_1 = pm.math.tanh(pm.math.dot(nn_input , weights_1 ))
16 act_2 = pm.math. sigmoid (pm.math.dot(act_1 , weights_2 ))
17

18 out = pm. Categorical ("out", act_2 ,
19 observed =nn_output , total_size = Y_train .shape [0])

Listing 6.1: Two-layer layout of probabilistic neural network written in Python
using PyMC3 package. Firstly, the prior distribution values are created as arrays
of random variables. Network, the PyMC3 model includes data for training
X_train with their true value indices Y_train. Layer weights are created as a
array of Normal distributions. Activation functions are created on top of each
weight with tanh and sigmoid types. Output is Categorical block with the size
of the total number of gestures. Notice that the variables act_1, act_2, out are
connected to each other in series.

1 with neural_network :
2 inference = pm.ADVI ()
3 approx = pm.fit(n=30000 , method = inference )

Listing 6.2: Learning the framework as fitting with fit function from PyMC3
package. Chosen method Variational Inference ADVI with iterations n.

Experimental results and Discussion

The probabilistic method was evaluated on 7 static gestures from the main
dataset (Sec. 5.6). Configuration of dataset (see Sec. 5.6) varies between
User defined and All defined. To be specific, the used dataset has around 300
recorded samples (∼ 50 samples for each gesture). Note that all experiments
have 30000 iterations, if not told otherwise. Example view of the dataset
values can be seen on Fig. 6.8, note two different features from the dataset
were chosen.

In this subsection, it is shown how to get from the low accuracy (Tab. 6.2)
to the high one (Tab. 6.5). By evaluating the results for different number of
hidden nodes, we can see (see Fig. 6.9) that there is always some optimal
point. If the number of nodes is lower, the network cannot fit the detection
in such a small flow width. If the number of nodes is bigger than optimal,
the network starts with overfitting, the number of input samples is too low.
We found out that for our dataset with 7 gestures, the optimal number of
nodes is 50.
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6. Gesture recognition ..................................

Figure 6.8: Example of dataset. Two features were chosen randomly. Note that
values are nor normalized.

Figure 6.9: n hidden layers vs. Accurracy. As you can see in the picture, the
number of layers has the optimal value for the maximum accuracy, somewhere
in the middle.

Insufficient learning of the network can be seen in Tab. 6.3. The network
has three layers, while the number of samples is only 287. Using data from
more frames resulted in much higher accuracy, see Tab. 6.4. As it can be
seen from Fig. 6.10, every gesture is learned properly only with one exception,
the Grab-Pinch connection. That can indicate that the network has still
insufficient number of samples for 3-layer network.

The most suitable option and the best result is to use the All defined
dataset configuration (5.6), that is using the possibility of all data from the
sensor. It seems that from this point, the network can finally understand
the gestures properly, the total accuracy is 96% (see Fig. 6.11). Now lets
compare the Probabilistic with Deterministic type of gesture detection.
The total accuracy on a whole dataset for Deterministic opetion is only 84%,
the Probabilistic approach is about 12% better with the total accuracy of
96%.
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Hidden Accuracy of data Train
nodes Test Train time Note

10 78% 79% <10sec.
20 65% 66% <10sec.
50 82% 80% <10sec.
100 84% 81% ∼1min.
200 77% 85% ∼5min.

Table 6.2: Two layer model. Data picked as middle time-sample. Learning for 7
types of static gestures, 41 sample recordings of each gesture, 12 observations
per recording. Input dataset X = shape(287× 12), Y = shape(41).

Hidden Accuracy of data Train
nodes Test Train time Note

5 57% 56% <10sec.
10 79% 75% <10sec.
20 76% 78% <10sec.
50 76% 78% <1min.
100 80% 80% ∼3min.

Table 6.3: Three layer model. Data picked as middle time-sample. Learning for
7 types of static gestures, 41 sample recordings of each gesture, 12 observations
per recording. input dataset X = shape(287× 12), Y = shape(287).

6.4.2 Modelling dynamic gestures via ProMP

Probabilistic movement primitives are a great tool for incorporating the
trajectory in compressed form by weights. The weight representation of
Radial Basis Functions. Therefore, it is a different expression than the
trajectory position. Every trajectory in the joint space can be represented as
a linear combination of basis functions.

The representation of weights is suitable for learning representation with
uncertainty from several demonstrations. General framework for state trajec-
tories.

Processing data before training

For ProMP training, there is a specific need for further data processing. The
reason is that the gestures can, unlike a robot trajectory, be performed at
another place and should still be recognized by the system.

Normalization to zero can be done with Eq. 6.37. p = (p)Pn=1 variables are
the old point values and p∗ is the array of new values. Values P is number of
points and pref is picked automatically the reference point to which the path
will be normalized to, often it is the first point of path p or the middle point.

p∗ = (p− pref )Pn=1. (6.37)

Second normalization is the scaling one, which sets the position values
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Hidden Accuracy of data Train
nodes Test Train time Note

10 60% 60% ∼2min.
50 81% 82% ∼10min. Fig. 6.10
100 78% 77% ∼40min.
50 89.7% 90.2% ∼10min. Removed Pinch gesture

Table 6.4: Two layer model. Data picked as every 10th time-sample. Learning for
7 types of static gestures, 1230 sample recordings of each gesture, 12 observations
per recording. input dataset X = shape(8610× 12), Y = shape(8610).

Figure 6.10: Static gesture recognition via Probabilistic approach. Confusion
matrix shows the results for each of the 7 compared static gestures from main
dataset (5.6), User defined type configuration (5.6). Network with 2 layers and
50 hidden nodes was used. As it can be seen the network is learned properly
(over 90% predicted accuracy, column right) except the Grab gesture (only 46%
predicted accuracy, top cell, right column), especially when the actual gesture is
Pinch (only 20% actual accuracy, when predicted gesture is Grab). Experiment
Tab. 6.4.
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Hidden Accuracy of data Train
nodes Test Train time Note

20 87% 87.2% ∼12min.
50 96% 96% ∼40min. 50000 iter., Fig. 6.11
80 86% 88% ∼45min.

Table 6.5: Two layer model. Data picked as every 10th time-sample. Learning for
7 types of static gestures, 1230 sample recordings of each gesture, 87 observations
per recording. input dataset X = shape(8610× 87), Y = shape(8610).

Figure 6.11: Static gesture recognition via Probabilistic approach. Confusion
matrix shows the results for each of the 7 compared static gestures from main
dataset (5.6), All defined type configuration (5.6). Network with 2 layers and
50 hidden nodes was used. As it can be seen from total accuracy over 96%.
The network is learned well, the only difficulties obtained from Grab/Spock
combinations, however stil over ∼ 92%. Experiment Tab. 6.5.

between 0 and 1. This can be done with Eq. 6.38, where the max function
returns the maximum number of array and min function returns the minimum
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Figure 6.12: Dataset samples of gesture Swipe left with the ones trained with
ProMP sample. Visualized the x axis.

number of an array. Then for whole array it is p∗ = f(p).

f(p) : p∗ = p−min(p)
max(p)−min(p) . (6.38)

The input for ProMP training are also the velocities. They can be computed
with derivation of a trajectories with respect to a time series for example
with diff function from Numpy package [44].

Training and sampling trajectories

Input data for ProMP is a set of trajectories in three dimensions, in particular
Palm points Pp and Palm velocities Pv, i.e., several demonstrations of a
gesture.

The network is trained. Properties of network includes Exponential basis
function. Processes of training are described in Ch. 3.5.

The outputs of the trained network from the input trajectories represen-
tation of one trajectory are the movement weights w and from them are
computed mean values vector µW and variances matrix ΣW .

Trained paths with all gestures of type Swipe left can be visualized as in
Fig. 6.12.

Gesture Detection via Euclidean distance

The method for dynamic gesture detection in this section is using Euclidean
distance comparison of two trajectories. The comparing process can be
visualized as in Fig. 3.3. As it can be seen, the comparation points are picked
consistently by the time series.

The main gesture dataset is used (see Ch. 5.6) for detection of 4 types of
Swipe gestures (Swipe Left, Swipe Right, Swipe Up, Swipe Down). Around 50
sample recordings are included for every of these gestures.
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Firstly, the ProMP network is trained on that dataset and generates one
sample trajectory for every type of gesture. Therefore, we have four paths
in every of the three dimensions. These paths are used for comparing the
trajectories with the given testing samples. Secondly, intentionally in the first
two methods, the ProMP samples are not presented. The difference between
applying the ProMP was observed.

Methods:.Method without ProMP. Compare the new trajectory to every sample in
the dataset and then compute the mean value of all gestures. Computer
demanding, not suitable..Method without ProMP. Compare a new trajectory to a random sample
from every dataset.Method using ProMP: Dataset is separated to trajectories, for each
chosen set of trajectories the ProMP learning is applied. For each
gesture, a sample trajectory is created. Then these trajectories are
compared to the test trajectory

Experimental results and Discussion

The results were marked into Tab. 6.7. The method No. 1 is presented as
Euclidean distance calculation between two trajectories, in a configuration of
each sample with each sample. On Fig. 6.15 can be seen that the total accuracy
is 94%, which is impressive, on the other hand, the computational time is
about 25 minutes. Which would result in 48 seconds to singe sample. This
method cannot be used in live detection. Second Method is weaker in terms
of total accuracy, to only ∼ 70%, the compared trajectory is chosen randomly,
this method is not the right approach, and it is here only for comparison. The
third method did finally involve the ProMP trained trajectory paths. The
third method is the most useful when evaluating accuracy and performing
time (Total accuracy 89%), while 50 times lower execution time than method
No. 1.

Method Accuracy Time Note

No.1 94% ∼25min. Fig. 6.15
No.2 ∼70% ∼15sec.
No.3 89% ∼15sec. Fig. 6.14

Table 6.6: Dynamic Time Warping method. Experiments performed with swipe
directional gestures. Three methods presented.

In this section, different sample trajectories based on ProMP were created.
Three methods with Euclidean distance evaluation were performed.

was performed, see Fig. 6.14.
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Figure 6.13: Dynamic gesture recognition via Euclidean distance. Confusion ma-
trix shows the results for method No. 1, each with each, swipe directional gestures
are compared from main dataset (5.6), Palm point Pp path configuration

6.4.3 Dynamic Gesture recognition via Dynamic Time
Warping

Time warping as described in Ch. 3.5 was used to help with dynamic gestures,
respectively, to help with path evaluation. The function that was used is
from fastdtw package [45]. The task is to classify the category of an observed
trajectory. We propose and compare three approaches using dynamic time
warping to match an observation to a set of labeled trajectories. The methods
vary in computational complexity and accuracy.

The task is to determine to which category is classified some selected (or
newly recorded) sample, knowing that the time warping function returns the
Euclidean distance between two paths as a scalar quantity. Input trajectory
is extracted as the trajectory of palm Poses Ppose (see Tab. 5.2). Length
of trajectory is S = 100 samples as 1 second recording, therefore input is
Ppose = (Ppose)Ss=1. Methods:..1. Compare new trajectory to every sample in dataset and then compute

mean value of all gestures. Computer demanding, not suitable...2. Compare a new trajectory to random sample from every dataset..3. Create ’mean’ trajectories from ProMP sampler and then compare the
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Figure 6.14: Dynamic gesture recognition via Euclidean distance. Confusion
matrix shows the results for method No. 3, ProMP sampled paths are used, for
4 directional Swipe gestures.

new trajectory to generated one

Input data processing

The input for this approach execution is Processed frame P with two types
configuration (see 5.6). The User defined and All defined.

The reason for data processing is that the recorded data are not consistent,
frames per second are erratic, and there is even no guarantee that it will stay
over 50 fps.

Firstly, there is a need to pick exactly one-second long intervals. As it has
been said, we have an array of Processed frames P . The program analyzes the
Timestamp of every frame and checks if it not older than the last Timestamp.
The buffer length is always bigger than one second. Note that this is needed
to be done for every sample recording.

Secondly, all samples have different time lengths and there is a need for
every sample to have the same length. One option to do so is to create the
remaining samples with interpolation. For every trajectory in the dataset is
performed interpolation. This can be done with interp1d Python function
from SciPy package [46]. The series can and is interpolated with a cubic
function. The length of time can be changed in settings, but it is set to 100
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samples.

Experimental results and Discussion

Method Accuracy Time Note

No.1 96% ∼10min. Fig. 6.15
No.2 ∼75% ∼0.5sec.
No.3 92% ∼0.5sec. Fig. 6.16

Table 6.7: Dynamic Time Warping method. Experiments performed with swipe
directional gestures. Three methods presented.

The method is Dynamic Time Warping is not computationally demanding
at all. While evaluating each with each (Method No. 1 by Euclidean Distance,
Tab. 6.7) took about 20 minutes, the evaluating each with each with DTW,
it took only 8 sec. of computation. The results can be seen from results in
Fig. 6.15, the accuracy across all recorded samples is the best with a total
value of 96%. It can be said that this model is the most useful of all the
presented dynamic gesture detection models and it is advised to use it for
this kind of detection.

Let us talk about the second method. Test trajectory is compared with
the random trajectory from the dataset. From the given results, we can see
the decrease of accuracy from 96% (Method No.1) to only ∼75% (Method
No.2), the method is arbitrary, but the percentage number can be used later
in comparison. This method is quick to compute, but it is not sufficient to
be useful.

Method number three uses ProMP network. The method divides the
dataset by gesture and computes the ProMP training on all divided sub-
datasets. By training the network, the same number of sampled trajectories
is created. The computation time is half a second for all samples in the
dataset, which is 0.025s for a single test sample. The accuracy is ∼ 92% as
seen in Fig. 6.16. This could be the best solution for live detection of gestures,
because the method brings the highest accuracy for the lowest time.
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Figure 6.15: Dynamic gesture recognition via Dynamic Time Warping. Confu-
sion matrix shows the results for Method No.1, each with each, swipe directional
gestures are compared from main dataset (5.6), Palm point Pp path configura-
tion. As it can be seen, total accuracy is around 96% is rated as useful model.
Experiment Tab. 6.7.
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Figure 6.16: Dynamic gesture recognition via Dynamic Time Warping. Confu-
sion matrix shows the results for Method No.3, ProMP generated base trajectory
as reference, swipe directional gestures are compared from main dataset (5.6),
Palm point Pp path configuration. As it can be seen from total accuracy around
92%. Experiment Tab. 6.7.
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Chapter 7
Robot control via gestures

In this chapter are presented different methods of coupling the hand tracking
to robot end-effector to accomplish the defined policies. The defined ones are
picking and placing a button, opening and closing a drawer, and pushing a
button. These are the most basic tasks a robot manipulator can do and they
can be extended in further work.

Four modes of interaction are presented. Live mode maps the hand to
end-effector in real time. Interactive does the same as Live mode but adds
the Scene object interaction. Gesture based mode is moving the end-effector
incrementally based on gesture detection ticks. Finally, the memory path
execution with hand control is executing any robot path that is saved in
memory as directed by the gestures. This is useful when motions have to be
executed with high positional precision, but the process shall be controlled
via gestures.

Possible output interpretations

What type of control does a person need or what type of interpretation can
be output from gestures.. Boolean value, trigger something. Use distance as a value, set some properties with given value. Using pose (e.g., palm position) for x,y coordinates. Directional cross, move in the direction (left, right, up, down) one step

at a time when the gesture is triggered.Wait/Hold (For confirmation), remain in given pose

Then for a more robust operation trigger, there can be used a combination
of these types. Every action and their reaction is tied to some context.

7.1 Controlling the end-effector via gestures

In this section is a description of mapping from Leap Motion Controller to
Base link motion planning workspace and to User Interface. All workspaces
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are tied with Kuka iiwa described in Ch. 4.1.2. The transformations can be
visualized by diagram in Fig. 7.1. The workspaces are described in Ch. 5.5.

Figure 7.1: Transformations between workspaces.

7.1.1 Correspondence mapping from perceived hand pose to
robot workspace

Every workspace represented in Fig. 7.1 are completely different environments,
and they have different defined axis ordering, different scaling, and translations.
In order to achieve harmony between workspaces, different transformations
are presented.

The person can place Leap Motion sensor virtually in the robot workspace
and scale the observations to let the operator comfortably control the robot
in its workspace. The scaling might be adjusted for tasks requiring high
precision or large motion.

Fixed orientation mode

Fixed orientation mode is defined with orientation specifications:

. Fixed: End-effector orientations are assigned as the default values defined
for each workspace (see Eq. 7.5). Not Fixed: End-effector takes real orientation from the palm position

Leap Motion to Base link transformation

First transformation is needed to be done, because the Leap Motion device
has different axes and scaling. Following equation (Eq. 7.1) take point from
Leap workspace and transforms it into the Base link workspace. As it can
be seen first two axes are switched because Leap Motion is intended to have
axes x, y as the computer screen (see Fig. 7.2c), on the other hand Base
link workspace has x, y as a ground axis. Scaling parameter S is in this case
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S = 0.001, because millimeters from Leap Motion space are converted to
meters in Base link workspace.

pbaselink = S ·

 px−pz
py


leap

(7.1)

Base link to Workspace transformations

Scenes are composed of three workspaces, which are defined in Ch. 5.5. These
workspaces are defined with different end-effector translations and orientations.
They are named as the above workspace (see Fig. 7.2a) for working in space
above the robot, the wall workspace (see Fig.7.2b) so the robot can write to
the wall and the table workspace so the robot can write on the table.

Transformations from Base link to these workspaces can be written as
Eq. 7.2, Eq. 7.3 and Eq. 7.4.

pabove = S ·

1 0 0
0 1 0
0 0 1

 ·
pxpy
pz


Baselink

+

 0.0
0.0
0.85


start

, (7.2)

pwall = S ·

 0 1 0
−1 0 0
0 0 1

 ·
pxpy
pz


Baselink

+

0.7
0.0
0.1


start

, (7.3)

ptable = S ·

 0 0 1
−1 0 0
0 −1 0

 ·
pxpy
pz


Baselink

+

0.4
0.0
0.0


start

, (7.4)

where S is the scalar scaling factor of the workspace. In practise, S = 1.
End-effector default orientations for each workspace can be defined. This

definition is strictly for the fixed end-effector orientation mode. Upwards for
above workspace, direction to x-axis for wall option and direction downwards
for table option. Orientations can be written with quaternions in Eq. 7.5.

Qabove =


x
y
z
w

 =


0
0
0
1

 , Qwall =


0.5
0.5
0.5
0.5

Qtable =


0.0
0.0√

2
2√
2

2

 (7.5)

End-effector live orientation transformation, which is when end-effector
fixed position mode is off. This transformation is needed, because different
workspaces have different axis ordering. Performing the axis switch is done
by a sequence of Eq. 7.6 and Eq. 7.7.

M = rot(e1, axis1) · rot(e2, axis2) · rot(e3, axis3), (7.6)

e∗ = euler_from_matrix(M), (7.7)
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where axis =

axis1axis2
axis3

 rotational matrix, e = [e1, e2, e3] are input Euler

angles and e∗ is the output Euler angles. rot function returns the rotation
matrix of the angle in the given axis and euler_from_matrix returns Euler
angles from the rotation matrix. Note that euler_from_matrix, and rot
functions are used from ROS transformation package [39].

Leap Motion to User Interface transformation

Leap Motion palm position is transformed to UI screen x, y coordinates
(2D projection) using Eq. 7.8, received values Pui,x′ and Pui,y′ represents
pixel values on the screen and Pui,z′ is displayed as volume of hand marker,
typically between volume 5− 100.

pui =

x′y′
z′

 =

 2 · x
−2 · y

−(z − 200)/10

+

w/2h
0

 (7.8)

(a) : Above workspace. (b) : Wall workspace. (c) : Leap workspace.

Figure 7.2: Above and Wall workspaces visualized in coordinate frame in respect
to Base link.

7.1.2 Live mapping

Live mapping process that invokes the Manipulation type of gesture (3.2).
The main goal is to track the robot manipulator end-effector with Leap
Motion as with 3D mouse. In this mode, the chosen workspace must be
set up properly, otherwise, the end-effector will not reach the right position.
Specific orientation even shrinks the reachable space, then the fixed mode
can be used, the manipulation is more comfortable.

First, we choose what position from Leap Motion will be mapped. In all
cases, it is best to use the center of the user’s palm, but it is possible to map
any position of the hand’s Bone structure S (3.3). The tip of the pointing
finger is also worth mentioning as the second best candidate for mapping.
Transformations from Leap to Workspace are used to convert poses to the
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robot workspace. This can be done with a custom frequency, in realization it
has been set to 10Hz. Users choose from defined workspaces to operate in.
The process involves writing the transformed pose of end-effector to memory
where it can be picked by the inverse kinematics task which then returns
joint values and then these joint values are used for robot control.

The transformations can have different properties. For example, the scaling
factor of the workspace can be changed according to the situation. As well as
the starting position of workspace and more. The changes are then projected
as an updated Interaction Box (Ch. 5.5.1) and its corners which are visualized
by RVIZ markers, see Fig. 7.3.

Figure 7.3: Live mapping example with drawing a trajectory.

7.1.3 Interactive mapping

Interactive mapping was created to perform defined scenarios and policies. The
idea was to develop a system that could easily interact with the environment.
Use Leap Motion 3D mouse to bring the end-effector flawlessly to the closeness
of the object, but not interact with it unless the user does the specific action.

The main key is that scenarios, objects, and actions can be variously created
according to specific needs. Interactive mapping mode is defined as a live
mapping option but with objects in mind. This mode interacts with objects
and should have provided collision detection. Every object defined in Scene
has its grasping position defined from its origin. If end-effector comes closer
to this point, the grasping action can be executed. This action is different
based on the type of object.

Collision detection checks if end-effector is inside any object. If it is, it
will not propagate the end-effector further and find the nearest pose, that
is, without collision. That can be done by stopping the live mapping, if the
end-effector is near the object and then computing the closest distance to
the user desired point, while still maintaining collision-free status. The grid
search method can be used.
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7.1.4 Memory path execution with hand control

The process involves a user choosing an arbitrary path from memory by
choosing from existing paths or from files. Selected time trajectory will pop
up on top of the user interface, see Fig. 7.4.

Figure 7.4: Path play trajectory bar.

The chosen path can be played, stopped, or rewinded by a button. While
the path is executing, the black mark signals its position based on the path
request and the red mark signals the progress of the received end-effector
position.

And it would not be gesture controlled if the path execution would not be
able to control with gestures. A user can grab the black path index marker
with the left hand and move it left or right on the timeline. The robot
manipulator then goes to the corresponding position of the path.

7.1.5 Gesture based robot control use-cases

Three robotic manipulation tasks were selected to demonstrate the capabilities
of the proposed system. The three use cases are box picking, drawer opening,
and button pushing. Attaching and detaching of objects is done via MoveIt!
script (see Ch. 4.1.2).

Pick/place method

In this method, the user is told to move the box to the goal region. The user
can decide where he is putting the box, also can decide when he wants to
attach or detach the box. The most comfortable and easy is use the Grab
gesture for attaching the box and detaching the box when the Grab gesture
is released. Another option can be grabbing with three fingers or with two
fingers, which corresponds to the Pinch gesture. When picking new gestures
for this method, the picked gesture must be intuitive, for example, the Point
gesture is easier to perform, but it unsuitable for this method. This gesture
operates with the table workspace to reach the surface with end-effector. For
better moving accuracy, the scaling factor can be lowered. Brave goal would
be to increase the level of accuracy to the point that the user could fill the
toothbrush with the toothpaste, but that would require testing on a real
robot. This method is visualized on Fig. 7.5.

Additional informations about the method of realization: The grasping
tool is in this example represented by suction cups mounted on end-effector
joints. If the end-effector comes close to any object, it is able to attach it
and detach it on demand. Action zone is anytime when the end-effector finds
itself near to the box.
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Figure 7.5: Picking and placing of two boxes. Two boxes scene.

Drawer manipulation method

The drawer is made up by its immovable shell and three movable sockets. The
user has the ability to interact with any of them how he wishes. Again, some
gesture is used for attaching the particular socket. The most reliable gesture
is again the Grab gesture, it interpreters the real life most of all gestures.
The interaction point with the drawer socket is in the middle of each drawer.
This method is visualized on Fig. 7.6.

When the socket is attached, the program is turned to Strict mode where
only movement in one axis is allowed. The Strict mode is turned on until the
user detaches the drawer. This simplification is useful, because the drawer
is restricted by all means to move only in one dimension at all times, the
drawer movements are defined and do not offer moves in other dimensions.
Most users do not have the best accuracy in hand control and it would result
in hinting the drawer shell.

Figure 7.6: Opening and closing drawer sockets. Two drawers scene. Note that
RVIZ is not visualizing the front sides of the sockets (for better view), but they
are still there.

71



7. Robot control via gestures ...............................
Pushing button method

The user is able to move around in live mode, when he comes near the button,
the action will pop up. Interaction point is on the top of the button. The
button is clicked with the assigned gesture. Every time the button is clicked,
the movement of the clicking button is performed. The clearest candidate for
clicking is Point gesture. Another potentional gesture could be the Touch
gesture towards the button. Performed as touching the screen with the index
finger. The drawback is that when the user is performing the Touch gesture,
the center of the palm is moved and the the Touch gesture is recognized, it
deflects from the original position, and the new position does not have to be
in the action zone. The Pin gesture is more suitable to use (Pin movement
performed as playing the piano key with the index finger). The center of the
palm is not changed when performing this gesture. This method is visualized
in Fig. 7.7.

Additional informations about the scene: The button has its immovable
housing part which is not moving and its inner part which does the vertical
movement (click) during activation.

Figure 7.7: Clicking a buttons. Three buttons scene.

List of capabilities

Note that the gestures picked in the previous S. 7.1.5 can be changed by the
situation to reach the highest accuracy and user comfort. The Grab, Pinch
and Point static gestures were the most natural way to control the robot
actions. The dynamic gestures were also tested for action launching, but they
were worse for comfort when performing then. For example the detaching
an object can be performed by Rotate gesture, but releasing the static one is
much easier. Sometimes the most efficient and useful realizations are also the
most simplest ones.

72



..................... 7.2. Testing accuracy of inverse kinematics controller

7.1.6 Iterative gesture control

The last mode of end-effector manipulation in this chapter is using the
iterative control. This method is presented as the contrast to live method
control. Possible representation of the control realization is made using the
Swipe gesture. Condition to every Swipe gesture is to condition the gesture by
orientation. There is defined 6 orientation directions (Left, Right, Up, Down,
Front, Back). Every gesture swipe detected in a given dimension is performed
as a move of end-effector towards the given position. The movement iteration
has defined distance of movement. It is set to 10 cm by default.

7.2 Testing accuracy of inverse kinematics
controller

RelaxedIK formulates the path-wise inverse kinematics problem as multi-
objetive optimization problem [19], where motion goals in addition to end-
effector pose matching can be encoded as terms in the weighted sum. The
solver can decide to avoid threats (self-collisions, singularities, etc.) at the
expense of accuracy.

First, we tested the accuracy of the inverse kinematics controller from
package Relaxed IK. The test is very simple. First, we assign the goal pose of
end-effector and then see to what point it will converge.

Test on a single plane when axis z = 0.1m and varying x and y coordinates
on one side of a robot. The results are in Fig. 7.8. There can be seen that
with a proper configuration the error of inverse kinematics is under 1 cm. On
the left and right sides of the plot, the robot starts to get out of range and
that is the reason for the higher errors.

Figure 7.8: Plane test accuracy of Relaxed IK controller. x and y are axis of
the robot grid. Values of axis as well as scale units are in decimeters.
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7.3 User study

User study was done on 7 people. There were three categories. The determin-
istic gesture recognition, the probabilistic one, and manipulation methods.
For gesture recognition, two confusion matrices for each category were created.
They includes the sum of all participants. For the manipulation methods,
three tables determining the time and success were created. Manipulation
method action gestures were detected with deterministic type of detection.

Deterministic gesture results

Users were asked to perform 7 gestures from list. Every gesture recordings
were repeated from 3 to 5 times. The results can be seen on Tab. 7.1. From
the table, it can be seen that the first three gestures were 100% successful
in all tries and therefore can be adopted in future applications. The worst
gesture was Spock, because it is hard to perform this gesture on the first try
properly.

Person no. Accuracy Best Gesture Worst Gesture

1 77.2% Grab, Pinch, Point, Respectful, Rock Spock (0/4)
2 80.6% Grab, Pinch, Point, Rock Victory (0/4)
3 64.3% Grab, Pinch, Point, Respectful Spock (0/4)
4 70.0% Grab, Pinch, Point, Respectful, Rock Spock (0/5)
5 82.7% Grab, Pinch, Point, Respectful Spock (0/4)
6 64.3% Grab, Pinch, Point, Rock Spock (0/4)
7 100.0% All -

mean ∼ 77%

Table 7.1: User study evaluation of Deterministic approach. 7 static gestures
were tested. Best Gesture states that all tries were successful. Worst gesture
states that no tries were successful.

Probabilistic gesture results

The different method was applied to the same dataset. From the results on
Fig. 7.2, it can be seen that the method learned better the Spock gesture
than the Deterministic version, however the Rock and Victory gestures were
a problem for it. The reason can be found in the recording of the dataset.
The probabilistic network was not learned from the slight variances in the
gesture execution, which the users were performing. If the network would be
learned by the dataset from more people, the accuracy would be higher.

Manipulation method results

The results were divided into three tables (Tab. 7.3, Tab. 7.4 and 7.5) for
each manipulation task. Gesture detected column represents which gestures
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Person no. Accuracy Best Gesture Worst Gesture

1 79.7% Grab, Pinch, Point, Spock Rock (1/3)
2 87.4% Grab, Pinch, Point, Spock Rock (0/4)
3 86.6% All except Victory Victory (0/4)
4 72.4% Grab, Pinch, Point, Spock Victory (2/4)
5 66.0% Grab, Point, Spock Rock (1/4)
6 84.5% Grab, Pinch, Point, Rock Rock (2/4)
7 78.3% Grab, Pinch, Point, Spock Victory (0/4)

mean ∼ 79%

Table 7.2: User study evaluation of Probabilistic approach. 7 static gestures
were tested. Best Gesture states that all tries were successful. Worst gesture
states that no tries were successful.

were detected throughout the process, where the red one are wrongly detected
gestures. Time denotes the duration from the start to completion of the
manipulation task and Success column indicates if the process were successful
on the first try. In the tables, there can be seen a substantial variance in time
completion, which were also influenced by the fact that they have seen the
manipulation for the first time and most of them were told only the minimum
informations on how to operate the manipulator. The second fact is that
some users did not want to use the manipulation as quickly as possible, but
they were executing the task at a slow pace, which they liked. All attempts
succeed on the first try, even though every user has seen the task on the first
try.

Person no. Gestures detected Time Success

1 Grab 28 s True
2 Grab 21 s True
3 Grab, Pinch 40 s True
4 Grab 23 s True
5 Grab 16 s True
6 Grab 12 s True
7 Grab, Pinch 24 s True

Table 7.3: User study, manipulation method. Users were asked to open and
close one socket of the drawer with Grab gesture. Average time of completion is
23 s, all attempts were successful on first try.
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Person no. Gestures detected Time Success

1 Grab 16 s True
2 Grab 24 s True
3 Grab, Point, Pinch 40 s True
4 Grab, Pinch 36 s True
5 Grab 8 s True
6 Grab 8 s True
7 Grab, Pinch 20 s True

Table 7.4: User study, manipulation method. Users were asked to pickup a box
and put it into goal region with Grab gesture. Average time of completion is
21 s, all attempts were successful on first try.

Person no. Gestures detected Time Success

1 Point 9 s True
2 Point 4 s True
3 Point 5 s True
4 Point 8 s True
5 Point 2.5 s True
6 Point 3 s True
7 Point, Grab 12 s True

Table 7.5: User study, manipulation method. Users were asked to push a button
with Point gesture, one-time click. Average time of completion is ∼ 6.2 s, all
attempts were successful on first try.
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Chapter 8
Conclusion and Future work

The summarization of the whole thesis can be done in three points. Firstly,
the gesture detections were defined and developed in various ways. The results
are presented below. Secondly, the manipulation methods were developed
and it was tested their accuracy with user study. Thirdly, the User Interface
were developed.

Let us compare the static gesture representation results, 7 static gestures
were compared with values from the main dataset (see S. 5.6). Deterministic
approach with total accuracy of 84% (see Fig. 6.6) with the Probabilistic
approach with 96% (see Fig. 6.5). The Probabilistic method is superior to
the Deterministic one, which confirms the hyposhesis of the thesis, that
the Deterministic defined gesture detection will never be as accurate as the
Probabilistic one, learned with the proper way. The best Probabilistic The
method has only 2-layers and 50 inner nodes.

Evaluating the Dynamic gestures, which method is performing best, both
the accuracy and computational cost were taken into account The highest
accuracy was reached by the Dynamic Time Warping method, (Ch. 6.7), where
each-to-each type of comparison was used. For this method, the achieved
accuracy was up to 96%. The best method for compromise is the ProMP
trajectory sampled method. The accuracy is only a little lower then with the
first method, resp. 92%, but the time is reduced by more than fifty times.
This option is the same as for the lowest time computed.

The main thing which was not depicted in discussions is the dependence
of all detection tests on the proper tracking of Leap Motion bone detection
software. When the user study was performed, it happened that the subject
did not know that the sensor is inactive and performed a given gesture with
a completely wrongly detected bone position, resulting in a worse accuracy
score.

The user study enabled the evaluation of static gesture detection and ease
of use of the proposed system. The deterministic method did not do well on
the user study. The overall accuracy was 79% (see Fig. 7.2), which is worse
than the result of the initial tests, and this might be caused by the tuning the
parameter for a single user. Despite the bad results, the Probabilistic type
still wins with 79% (see Fig. 7.2), even if only with a small difference.

The robot manipulator can be extended into two arms. Each arm corre-
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sponds to the left and right hand. The Relaxed IK tool does also support a
multiarm setup, so the realization would not be difficult. Two-hand gestures
would enable a variety of new interaction methods, which might be worth
exploring. More complex interactions would be possible to operate. One
manipulation policy could be filling the toothbrush with a toothpaste that
could help an elderly person when is needed. Other manipulations can be
swiping the floor or washing the dishes.

The next thing would be implementing even better User Interfaces. The
motivation is the Leap Motion provides already some partially built packages
for computers. Therefore, that I should not have to implement my own
interface from the bottom like I was doing in Ch.5.4.
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Appendix A
List of Abbreviations

Shortcut Meaning

LMS Leap Motion Sensor
GDS Gesture detection system, such as Leap Motion sensor
DOF Degree of freedom
CPU Central processing unit
ProMP Probabilistic Movement Primitives
ROS Robot operating system
HRI Human-Robot Interaction
RAM Random access memory
RGB Red Green Blue (Image)
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Appendix B
ROS messages definitions

Additional variable definitions based on ROS messages.

Name Type

Cartesian position p = [x, y, z] Float[] length 3
Quaternion orientation o = [x, y, z, w] Float[] length 4

Table B.1: Pose definition, [] denotes a vector specification.

Name Type

seconds s Integer
nanoseconds ns Integer

Table B.2: Timestamp definition.

Name Type

Header ROS header
Joint names Strings[]

Joint trajectory points Joint Trajectory Points[] (see Tab. B.4)

Table B.3: Joint Trajectory definition, [] denotes a vector specification, ROS
header serves purpose as unique identifier of message, timestamp and sequence
number is included in there.

Name Type

Positions Float[]
Velocities Float[]

Accelerations Float[]
Efforts Float[]

Table B.4: Joint Trajectory Point definition, [] denotes a vector specification.
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